scholarly journals miR-4293 upregulates lncRNA WFDC21P by suppressing mRNA-decapping enzyme 2 to promote lung carcinoma proliferation

2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Qian Zhang ◽  
Yun-Fei Yan ◽  
Qing Lv ◽  
You-Jie Li ◽  
Ran-Ran Wang ◽  
...  

AbstractNon-coding RNAs (ncRNAs) involve in diverse biological processes by post-transcriptional regulation of gene expression. Emerging evidence shows that miRNA-4293 plays a significant role in the development of non-small cell lung cancer. However, the oncogenic functions of miR-4293 have not been studied. Our results demonstrated that miR-4293 expression is markedly enhanced in lung carcinoma tissue and cells. Moreover, miR-4293 promotes tumor cell proliferation and metastasis but suppresses apoptosis. Mechanistic investigations identified mRNA-decapping enzyme 2 (DCP2) as a target of miR-4293 and its expression is suppressed by miR-4293. DCP2 can directly or indirectly bind to WFDC21P and downregulates its expression. Consequently, miR-4293 can further promote WFDC21P expression by regulating DCP2. With a positive correlation to miR-4293 expression, WFDC21P also plays an oncogenic role in lung carcinoma. Furthermore, knockdown of WFDC21P results in functional attenuation of miR-4293 on tumor promotion. In vivo xenograft growth is also promoted by both miR-4293 and WFDC21P. Overall, our results establish oncogenic roles for both miR-4293 and WFDC21P and demonstrate that interactions between miRNAs and lncRNAs through DCP2 are important in the regulation of carcinoma pathogenesis. These results provided a valuable theoretical basis for the discovery of lung carcinoma therapeutic targets and diagnostic markers based on miR-4293 and WFDC21P.

2020 ◽  
Author(s):  
Qian Zhang ◽  
Yun-Fei Yan ◽  
Qing Lv ◽  
You-Jie Li ◽  
Ran-Ran Wang ◽  
...  

Abstract Background: Emerging evidence shows that lncRNA WFDC21P could promote STAT3 phosphorylation and microRNA 4293 SNP is associated with the risk of carcinomas, but the oncogenic functions of WFDC21P and miR-4293 in lung carcinoma are unclear.Methods: mRNA sequencing of lung carcinoma and control para-carcinoma tissues was performed to screen the potential targets. WFDC21P and miR-4293 levels were evaluated in lung carcinoma cells and tissues by qRT-PCR. The function of WFDC21P and miR-4293 on proliferation, apoptosis and metastasis were assessed by MTT, FACS, western blot, transwell assays, colony formation assays and xenografts experiment. RNA immunoprecipitation assays were implemented to verify the relationship between WFDC21P and mRNA-decapping enzyme 2 (DCP2). Furthermore, gain/loss of miR-4293 functions were used to determine its targeting relationship of DCP2. Results: WFDC21P expression is markedly enhanced in lung carcinoma tissue and cells. Moreover, WFDC21P promotes tumor cell proliferation and metastasis but suppresses apoptosis. Mechanistic investigations identified DCP2 can directly bind to WFDC21P and down-regulates its expression. DCP2 as a direct target of miR-4293 and its expression is suppressed by miR-4293. Consequently, miR-4293 can further promote WFDC21P expression by regulating DCP2. With positive correlation to WFDC21P expression, miR-4293 also plays oncogenic role in lung carcinoma. Furthermore, knockdown of WFDC21P results in functional attenuation of miR-4293 on tumor promotion. In vivo xenograft growth is also promoted by both WFDC21P and miR-4293. Conclusion: Our results establish oncogenic roles for both WFDC21P and miR-4293, and demonstrate that interactions between miRNAs and lncRNAs through DCP2 are important in lung carcinoma pathogenesis.


2019 ◽  
Vol 24 (39) ◽  
pp. 4659-4667 ◽  
Author(s):  
Mona Fani ◽  
Milad Zandi ◽  
Majid Rezayi ◽  
Nastaran Khodadad ◽  
Hadis Langari ◽  
...  

MicroRNAs (miRNAs) are non-coding RNAs with 19 to 24 nucleotides which are evolutionally conserved. MicroRNAs play a regulatory role in many cellular functions such as immune mechanisms, apoptosis, and tumorigenesis. The main function of miRNAs is the post-transcriptional regulation of gene expression via mRNA degradation or inhibition of translation. In fact, many of them act as an oncogene or tumor suppressor. These molecular structures participate in many physiological and pathological processes of the cell. The virus can also produce them for developing its pathogenic processes. It was initially thought that viruses without nuclear replication cycle such as Poxviridae and RNA viruses can not code miRNA, but recently, it has been proven that RNA viruses can also produce miRNA. The aim of this articles is to describe viral miRNAs biogenesis and their effects on cellular and viral genes.


NAR Cancer ◽  
2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Keisuke Katsushima ◽  
George Jallo ◽  
Charles G Eberhart ◽  
Ranjan J Perera

Abstract Long non-coding RNAs (lncRNAs) have been found to be central players in the epigenetic, transcriptional and post-transcriptional regulation of gene expression. There is an accumulation of evidence on newly discovered lncRNAs, their molecular interactions and their roles in the development and progression of human brain tumors. LncRNAs can have either tumor suppressive or oncogenic functions in different brain cancers, making them attractive therapeutic targets and biomarkers for personalized therapy and precision diagnostics. Here, we summarize the current state of knowledge of the lncRNAs that have been implicated in brain cancer pathogenesis, particularly in gliomas and medulloblastomas. We discuss their epigenetic regulation as well as the prospects of using lncRNAs as diagnostic biomarkers and therapeutic targets in patients with brain tumors.


2019 ◽  
Vol 84 (6) ◽  
pp. 233-239
Author(s):  
Xu Hui ◽  
Hisham Al-Ward ◽  
Fahmi Shaher ◽  
Chun-Yang Liu ◽  
Ning Liu

<b><i>Background:</i></b> MicroRNAs (miRNAs) represent a group of non-coding RNAs measuring 19–23 nucleotides in length and are recognized as powerful molecules that regulate gene expression in eukaryotic cells. miRNAs stimulate the post-transcriptional regulation of gene expression via direct or indirect mechanisms. <b><i>Summary:</i></b> miR-210 is highly upregulated in cells under hypoxia, thereby revealing its significance to cell endurance. Induction of this mRNA expression is an important feature of the cellular low-oxygen response and the most consistent and vigorous target of HIF. <b><i>Key Message:</i></b> miR-210 is involved in many cellular functions under the effect of HIF-1α, including the cell cycle, DNA repair, immunity and inflammation, angiogenesis, metabolism, and macrophage regulation. It also plays an important regulatory role in T-cell differentiation and stimulation.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Dag H. Coucheron ◽  
Marcin W. Wojewodzic ◽  
Thomas Bøhn

Abstract MicroRNAs (miRNAs) are small non-coding RNAs that function in RNA silencing and post-transcriptional regulation of gene expression in most organisms. The water flea, Daphnia magna is a key model to study phenotypic, physiological and genomic responses to environmental cues and miRNAs can potentially mediate these responses. By using deep sequencing, genome mapping and manual curations, we have characterised the miRNAome of D. magna. We identified 66 conserved miRNAs and 13 novel miRNAs; all of these were found in the three studied life stages of D. magna (juveniles, subadults, adults), but with variation in expression levels between stages. Forty-one of the miRNAs were clustered into 13 genome clusters also present in the D. pulex genome. Most miRNAs contained sequence variants (isomiRs). The highest expressed isomiRs were 3′ template variants with one nucleotide deletion or 3′ non-template variants with addition of A or U at the 3′ end. We also identified offset RNAs (moRs) and loop RNAs (loRs). Our work extends the base for further work on all species (miRNA, isomiRs, moRNAs, loRNAs) of the miRNAome of Daphnia as biomarkers in response to chemical substances and environment cues, and underline age dependency.


2016 ◽  
Vol 36 (3) ◽  
Author(s):  
Longci Sun ◽  
Hanbing Xue ◽  
Chunhui Jiang ◽  
Hong Zhou ◽  
Lei Gu ◽  
...  

This article aims to find the key long non-coding RNAs (LncRNAs) associated with colorectal cancer (CRC) and to study its biological functions in colorectal cancer progression. Our study has shown that upregulated LncRNA DQ786243 can regulate cell proliferation, cell cycle progression, cell apoptosis, migration, and invasion in CRC cells. Xenograft experiments confirmed that the growth of xenograft tumors formed by CRC cells was suppressed after silencing LncRNA DQ786243 expression. In conclusion, our study suggests that LncRNA DQ786243 is an oncogene that promotes tumor progression and leads us to propose that LncRNAs may serve as key regulatory hubs in CRC progression.


Open Biology ◽  
2015 ◽  
Vol 5 (12) ◽  
pp. 150138 ◽  
Author(s):  
Zeqian Gao ◽  
Xueliang Zhu ◽  
Yongxi Dou

microRNAs are a subclass of small non-coding RNAs that fine-tune the regulation of gene expression at the post-transcriptional level. The miR-302/367 cluster, generally consisting of five members, miR-367, miR-302d, miR-302a, miR-302c and miR-302b, is ubiquitously distributed in vertebrates and occupies an intragenic cluster located in the gene La-related protein 7 ( LARP7 ). The cluster was demonstrated to play an important role in diverse biological processes, such as the pluripotency of human embryonic stem cells (hESCs), self-renewal and reprogramming. This paper provides an overview of the mir-302/367 cluster, discusses our current understanding of the cluster's evolutionary history and transcriptional regulation and reviews the literature surrounding the cluster's roles in cell cycle regulation, epigenetic regulation and different cellular signalling pathways.


Author(s):  
Zhao-Ming Xiao ◽  
Dao-Jun Lv ◽  
Yu-zhong Yu ◽  
Chong Wang ◽  
Tao Xie ◽  
...  

BackgroundSWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily C member 1 (SMARCC1) protein is a potential tumor suppressor in various cancers. However, its role in prostate cancer (PCa) remains controversial. The aim of this study was to determine the biological function of SMARCC1 in PCa and explore the underlying regulatory mechanisms.MethodsThe expression of SMARCC1 was validated in PCa tissues by immunohistochemistry. Meanwhile, function experiments were used to evaluate the regulatory role on cell proliferation and metastasis in PCa cells with SMARCC1 depletion both in vitro and in vivo. The expression levels of relevant proteins were detected by Western blotting.ResultsOur finding showed that SMARCC1 was significantly downregulated in prostate adenocarcinoma, with a higher Gleason score (GS) than that in low GS. The decreased expression of SMARCC1 was significantly correlated with a higher GS and poor prognosis. Additionally, we found that silencing of SMARCC1 dramatically accelerated cell proliferation by promoting cell cycle progression and enhancing cell migration by inducing epithelial mesenchymal transition (EMT). Furthermore, depletion of SMARCC1 facilitated PCa xenograft growth and lung metastasis in murine models. Mechanistically, the loss of SMARCC1 activated the PI3K/AKT pathway in PCa cells.ConclusionSMARCC1 suppresses PCa cell proliferation and metastasis via the PI3K/AKT signaling pathway and is a novel therapeutic target.


2021 ◽  
Author(s):  
Ruhua Wang ◽  
Yunong Fu ◽  
Menglin Yao ◽  
Xiaomeng Cui ◽  
Yan Zhao ◽  
...  

Abstract Background: The oxaliplatin-based chemotherapy has revealed an encouraging therapeutic efficacy for advanced hepatocellular carcinoma patients. However, the development of resistance limits its clinical utilization. In addition, the chemotherapy resistance in HCC is usually accompanied with other malignant phenotypes, such as cell proliferation and metastasis, which together result in poor prognosis of HCC patients. Therefore, efforts should be made to explore potential regulators which fuel multiple events of HCC progression.Methods: The qRT-PCR, western blot, immunohistochemistry and immunofluorescence were performed to measure mRNA and protein expression. MTT assay, colony formation and Transwell assay were performed to evaluate cell proliferation and metastasis. Flow cytometry was performed to test cell apoptosis. Alkaline Comet assay was performed to measure DNA lesions. Transmission electron microscope analysis provided potent testimony of autophagy. The role of HN1 on the malignant phenotypes of hepatoma carcinoma was demonstrated in vitro and in vivo.Results: The immunohistochemistry analysis of HCC patient tissues revealed that the expression of HN1 was higher in HCC tissues compared to adjacent tissues and was associated with worse prognosis. In vitro, HN1 knockdown inhibited proliferation and metastasis of HCC cells, whereas HN1 overexpression promoted their proliferation and metastasis. In addition, we found that HN1 knockdown sensitized HCC cells to oxaliplatin, which is companied with deteriorated DNA damage and increased cell apoptosis in oxaliplatin-treated HCC cells. In vivo, HN1 knockdown inhibited the tumor growth and metastasis, and promoted the anti-cancer efficiency of oxaliplatin. Mechanically, HN1 prevented HMGB1 from ubiquitination and degradation via autophagy-lysosome pathway, which is related to its interaction with TRIM28, and overexpression of HMGB1 can restore the malignant phenotypes of HN1 knockdown in HCC cells. Furthermore, we found that HN1 can regulate cellular autophagy via HMGB1, which is important to tumor-promoting effect of HN1.Conclusions: In conclusion, we systemically revealed the multiple functions of HN1 in HCC progression and the underlying molecular mechanism, which indicated that HN1 could be a promising therapeutic target for HCC treatment.


Sign in / Sign up

Export Citation Format

Share Document