scholarly journals Spatial distribution and characterization of non-apical progenitors in the zebrafish embryo central nervous system

Open Biology ◽  
2017 ◽  
Vol 7 (2) ◽  
pp. 160312 ◽  
Author(s):  
Rebecca McIntosh ◽  
Joseph Norris ◽  
Jon D. Clarke ◽  
Paula Alexandre

Studies of non-apical progenitors (NAPs) have been largely limited to the developing mammalian cortex. They are postulated to generate the increase in neuron numbers that underlie mammalian brain expansion. Recently, NAPs have also been reported in the retina and central nervous system of non-mammalian species; in the latter, however, they remain poorly characterized. Here, we characterize NAP location along the zebrafish central nervous system during embryonic development, and determine their cellular and molecular characteristics and renewal capacity. We identified a small population of NAPs in the spinal cord, hindbrain and telencephalon of zebrafish embryos. Live-imaging analysis revealed at least two types of mitotic behaviour in the telencephalon: one NAP subtype retains the apical attachment during division, while another divides in a subapical position disconnected from the apical surface. All NAPs observed in spinal cord lost apical contact prior to mitoses. These NAPs express HuC and produce two neurons from a single division. Manipulation of Notch activity reveals that neurons and NAPs in the spinal cord use similar regulatory mechanisms. This work suggests that the majority of spinal NAPs in zebrafish share characteristics with basal progenitors in mammalian brains.

2016 ◽  
Vol 87 (1) ◽  
pp. 19-38 ◽  
Author(s):  
Ayanda Ngwenya ◽  
Nina Patzke ◽  
Paul R. Manger ◽  
Suzana Herculano-Houzel

It is generally believed that animals with larger bodies require larger brains, composed of more neurons. Across mammalian species, there is a correlation between body mass and the number of brain neurons, albeit with low allometric exponents. If larger bodies imperatively require more neurons to operate them, then such an increase in the number of neurons should be detected across individuals of a continuously growing species, such as the Nile crocodile. In the current study we use the isotropic fractionator method of cell counting to determine how the number of neurons and non-neurons in 6 specific brain regions and the spinal cord change with increasing body mass in the Nile crocodile. The central nervous system (CNS) structures examined all increase in mass as a function of body mass, with allometric exponents of around 0.2, except for the spinal cord, which increases with an exponent of 0.6. We find that numbers of non-neurons increase slowly, but significantly, in all CNS structures, scaling as a function of body mass with exponents ranging between 0.1 and 0.3. In contrast, numbers of neurons scale with body mass in the spinal cord, olfactory bulb, cerebellum and telencephalon, with exponents of between 0.08 and 0.20, but not in the brainstem and diencephalon, the brain structures that receive inputs and send outputs to the growing body. Densities of both neurons and non-neurons decrease with increasing body mass. These results indicate that increasing body mass with growth in the Nile crocodile is associated with a general addition of non-neurons and increasing cell size throughout CNS structures, but is only associated with an addition of neurons in some structures (and at very small rates) and not in those brain structures directly connected to the body. Larger bodies thus do not imperatively require more neurons to operate them.


1998 ◽  
Vol 4 (3) ◽  
pp. 217-221 ◽  
Author(s):  
K Asakura ◽  
M Rodriguez

In previous studies we demonstrated that the humoral immune response directed against unique central nervous system (CNS) antigens enhanced CNS remyelination in the Theiler's virus experimental model of multiple sclerosis (MS). To expand on this observation, a mouse IgMk monoclonal antibody (mAb) which enhances CNS remyelination, was raised against normal mouse spinal cord homogenate. Characterization of this mAb revealed that it is polyreactive towards variety of intracellular antigens but also reacts to an unidentified surface antigen on oligodendrocytes. The mAb is encoded by germline immunoglobulin genes without somatic mutations consistent with the observation that it is a natural autoantibody. Recently we generated another mouse IgMk mAb raised against normal spinal cord homogenate, which also promotes CNS remyelination. Further characterization revealed that both mAbs which promote remyelination have similar binding characteristics. Conventionally Abs which recognize normal CNS components, especially oligodendrocytes or myelin, have been considered to be a disease marker or be involved in the pathogenesis of MS. However, we have identified a unique population of circulating autoantibodies which are beneficial for myelin repair. Therefore this observation indicates the need to reevaluate autoantibody production against myelin components in CSF and blood as markers of disease activity versus repair in MS.


2008 ◽  
Vol 86 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Ruth A. Schwalbe ◽  
Melissa J. Corey ◽  
Tara A. Cartwright

The N-glycan pool of mammalian brain contains remarkably high levels of sialylated N-glycans. This study provides the first evidence that voltage-gated K+ channels Kv3.1, Kv3.3, and Kv3.4, possess distinct sialylated N-glycan structures throughout the central nervous system of the adult rat. Electrophoretic migration patterns of Kv3.1, Kv3.3, and Kv3.4 glycoproteins from spinal cord, hypothalamus, thalamus, cerebral cortex, hippocampus, and cerebellum membranes digested with glycosidases were used to identify the various glycoforms. Differences in the migration of Kv3 proteins were attributed to the desialylated N-glycans. Expression levels of the Kv3 proteins were highest in cerebellum, whereas those of Kv3.1 and Kv3.3 were much lower in the other 5 regions. The lowest level of Kv3.1 was expressed in the hypothalamus, whereas the lowest levels of Kv3.3 were expressed in both thalamus and hypothalamus. The other regions expressed intermediate levels of Kv3.3, with spinal cord expressing the highest. The expression level of Kv3.4 in the hippocampus was slightly lower than that in cerebellum, and was closely followed by the other 4 regions, with spinal cord expressing the lowest level. We suggest that novel Kv3 glycoforms may endow differences in channel function and expression among regions throughout the central nervous system.


2018 ◽  
Vol 23 (1) ◽  
pp. 10-13
Author(s):  
James B. Talmage ◽  
Jay Blaisdell

Abstract Injuries that affect the central nervous system (CNS) can be catastrophic because they involve the brain or spinal cord, and determining the underlying clinical cause of impairment is essential in using the AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), in part because the AMA Guides addresses neurological impairment in several chapters. Unlike the musculoskeletal chapters, Chapter 13, The Central and Peripheral Nervous System, does not use grades, grade modifiers, and a net adjustment formula; rather the chapter uses an approach that is similar to that in prior editions of the AMA Guides. The following steps can be used to perform a CNS rating: 1) evaluate all four major categories of cerebral impairment, and choose the one that is most severe; 2) rate the single most severe cerebral impairment of the four major categories; 3) rate all other impairments that are due to neurogenic problems; and 4) combine the rating of the single most severe category of cerebral impairment with the ratings of all other impairments. Because some neurological dysfunctions are rated elsewhere in the AMA Guides, Sixth Edition, the evaluator may consult Table 13-1 to verify the appropriate chapter to use.


1963 ◽  
Vol 44 (3) ◽  
pp. 475-480 ◽  
Author(s):  
R. Grinberg

ABSTRACT Radiologically thyroidectomized female Swiss mice were injected intraperitoneally with 131I-labeled thyroxine (T4*), and were studied at time intervals of 30 minutes and 4, 28, 48 and 72 hours after injection, 10 mice for each time interval. The organs of the central nervous system and the pituitary glands were chromatographed, and likewise serum from the same animal. The chromatographic studies revealed a compound with the same mobility as 131I-labeled triiodothyronine in the organs of the CNS and in the pituitary gland, but this compound was not present in the serum. In most of the chromatographic studies, the peaks for I, T4 and T3 coincided with those for the standards. In several instances, however, such an exact coincidence was lacking. A tentative explanation for the presence of T3* in the pituitary gland following the injection of T4* is a deiodinating system in the pituitary gland or else the capacity of the pituitary gland to concentrate T3* formed in other organs. The presence of T3* is apparently a characteristic of most of the CNS (brain, midbrain, medulla and spinal cord); but in the case of the optic nerve, the compound is not present under the conditions of this study.


1985 ◽  
Vol 55 ◽  
Author(s):  
F. Terry Hambrecht

ABSTRACTNeural prostheses which are commercially available include cochlear implants for treating certain forms of deafness and urinary bladder evacuation prostheses for individuals with spinal cord disorders. In the future we can anticipate improvements in bioelectrodes and biomaterials which should permit more sophisticated devices such as visual prostheses for the blind and auditory prostheses for the deaf based on microstimulation of the central nervous system.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1778
Author(s):  
Pakhuri Mehta ◽  
Przemysław Miszta ◽  
Sławomir Filipek

The recent developments of fast reliable docking, virtual screening and other algorithms gave rise to discovery of many novel ligands of histamine receptors that could be used for treatment of allergic inflammatory disorders, central nervous system pathologies, pain, cancer and obesity. Furthermore, the pharmacological profiles of ligands clearly indicate that these receptors may be considered as targets not only for selective but also for multi-target drugs that could be used for treatment of complex disorders such as Alzheimer’s disease. Therefore, analysis of protein-ligand recognition in the binding site of histamine receptors and also other molecular targets has become a valuable tool in drug design toolkit. This review covers the period 2014–2020 in the field of theoretical investigations of histamine receptors mostly based on molecular modeling as well as the experimental characterization of novel ligands of these receptors.


1989 ◽  
Vol 264 (31) ◽  
pp. 18552-18560 ◽  
Author(s):  
N C Thambi ◽  
F Quan ◽  
W J Wolfgang ◽  
A Spiegel ◽  
M Forte

Sign in / Sign up

Export Citation Format

Share Document