scholarly journals Experimental study on diesel engine exhaust gas recirculation performance and optimum exhaust gas recirculation rate determination method

2019 ◽  
Vol 6 (6) ◽  
pp. 181907 ◽  
Author(s):  
Xiang-huan Zu ◽  
Chuan-lei Yang ◽  
He-Chun Wang ◽  
Yin-yan Wang

In order to study the exhaust gas recirculation (EGR) performance of marine diesel engines, a venturi high-pressure EGR device was established to overcome the exhaust gas reflow problem based on a certain type of turbocharged diesel engine. The EGR performance test is accomplished and an optimal EGR decision-making optimization method based on grey correlation coefficient modified is proposed. The results show that the venturi tube EGR can basically meet the injection requirements of high-pressure exhaust gas and achieve good results. Through the venturi tube EGR, the NO X emissions reduce significantly with the maximum drop of 30.6%. The explosive pressure in cylinder reduces with the EGR rate increases and the cylinder pressure curve shows a single peak at low-speed conditions and double peaks at high-speed condition. However, the fuel consumption rate, NO X and smoke have been negatively affected. Due to small samples, the traditional evaluation method is difficult to determine the optimal EGR rate reasonably, while the proposed method can effectively solve this problem. It can weaken the shortcomings of subjective judgement and greatly improve the rationality of decision-making results.

2019 ◽  
Vol 22 (1) ◽  
pp. 284-294 ◽  
Author(s):  
FCP Leach ◽  
MH Davy ◽  
MS Peckham

As the control of real driving emissions continues to increase in importance, the importance of understanding emission formation mechanisms during engine transients similarly increases. Knowledge of the NO2/NOx ratio emitted from a diesel engine is necessary, particularly for ensuring optimum performance of NOx aftertreatment systems. In this work, cycle-to-cycle NO and NOx emissions have been measured using a Cambustion CLD500, and the cyclic NO2/NOx ratio calculated as a high-speed light-duty diesel engine undergoes transient steps in load, while all other engine parameters are held constant across a wide range of operating conditions with and without exhaust gas recirculation. The results show that changes in NO and NOx, and hence NO2/NOx ratio, are instantaneous upon a step change in engine load. NO2/NOx ratios have been observed in line with previously reported results, although at the lightest engine loads and at high levels of exhaust gas recirculation, higher levels of NO2 than have been previously reported in the literature are observed.


Author(s):  
N Ladommatos ◽  
S M Adelhalim ◽  
H Zhao ◽  
Z Hu

The investigation was conducted on a high-speed direct injection diesel engine and was concerned with the effects of exhaust gas recirculation (EGR) on diesel engine combustion and emissions. In particular, the effects of carbon dioxide (CO2), a principal constituent of EGR, on combustion and emissions were analysed and quantified experimentally. The use of CO2 to displace oxygen (O2) in the inlet air resulted in: reduction in the O2 supplied to the engine (dilution effect), increased inlet charge thermal capacity (thermal effect), and, potentially, participation of the CO2 in the combustion process (chemical effect). In a separate series of tests the temperature of the engine inlet charge was raised gradually in order to simulate the effect of mixing hot EGR with engine inlet air. Finally, tests were carried out during which the CO2 added to the engine air flow increased the charge mass flowrate to the engine, rather than displacing some of the O2 in the inlet air. It was found that when CO2 displaced O2 in the inlet charge, both the chemical and thermal effects on exhaust emissions were small. However, the dilution effect was substantial, and resulted in very large reductions in exhaust oxides of nitrogen (NO x) at the expense of higher particulate and unburned hydrocarbon (uHC) emissions. Higher inlet charge temperature increased exhaust NO x and particulate emissions, but reduced uHC emissions. Finally, when CO2 was additional to the inlet air charge (rather than displacing O2), large reductions in NOx were recorded with little increase in particulate emissions.


2021 ◽  
pp. 146808742110139
Author(s):  
José Galindo ◽  
Vicente Dolz ◽  
Javier Monsalve-Serrano ◽  
Miguel Angel Bernal ◽  
Laurent Odillard

Internal combustion engines working at cold conditions lead to the production of excessive pollutant emissions levels. The use of the exhaust gas recirculation could be necessary to reduce the nitrogen oxides emissions, even at these conditions. This paper evaluates the impact of using the high-pressure exhaust gas recirculation strategy while the diesel particulate filter is under active regeneration mode on a Euro 6 turbocharged diesel engine running at low ambient temperature (−7°C). This strategy is evaluated under 40 h of operation, 20 of them using the two systems in combination. The results show that the activation of the high-pressure exhaust gas recirculation during the particulate filter regeneration process leads to a 50% nitrogen oxides emissions reduction with respect to a reference case without exhaust gas recirculation. Moreover, the modification of some engine parameters compared to the base calibration, as the exhaust gas recirculation rate, the main fuel injection timing and the post injection quantity, allows to optimize this strategy by reducing the carbon monoxide emissions up to 60%. Regarding the hydrocarbons emissions and fuel consumption, a small advantage could be observed using this strategy. However, the activation of the high-pressure exhaust gas recirculation at low temperatures can produce fouling deposits and condensation on the engine components (valve, cooler, intake manifold, etc.) and can contribute to reach saturation conditions on the particulate filter. For these reasons, the regeneration efficiency is followed during the experiments through the filter status, concluding that the use of low high-pressure exhaust gas recirculation rates in combination with the regeneration mode also allows to clean the soot particles of the particulate filter. These soot depositions are visualized and presented at the end of this work with a brief analysis of the soot characteristics and a quantitative estimation of the total soot volume produced during the experimental campaign.


Sign in / Sign up

Export Citation Format

Share Document