scholarly journals Hydrodynamics of an in-pond raceway system with an aeration plug-flow device for application in aquaculture: an experimental study

2019 ◽  
Vol 6 (7) ◽  
pp. 182061 ◽  
Author(s):  
Wuhua Li ◽  
Xiangju Cheng ◽  
Jun Xie ◽  
Zhaoli Wang ◽  
Deguang Yu

An in-pond raceway system (IPRS) is an effective intensive aquaculture practice for regions with high water consumption and limited land resources. Water flow and dissolved oxygen (DO) are important for sustainable aquaculture. Several innovations have been made in IPRS design and operation to increase water exchange and DO concentration; one of these is the aeration plug-flow device (APFD). The APFD is commonly used in China as the only power source for water recirculation in aquaculture ponds. Understanding of the hydrodynamics of the system is necessary to improve the design of the IPRS with APFD. To this end, we performed experimental studies on a model system. We measured three-dimensional velocity at various locations using an Acoustic Doppler Velocimeter. Velocity distribution and turbulence characteristics were assessed, and plug-flow characteristics were analysed. Two patterns of velocity and turbulence in horizontal sections were observed: near the APFD, the water flow was intensively pushed downstream and simultaneously recirculated; farther away, the reflux area gradually decreased and the velocity and turbulence distribution trended towards uniform. Secondary flows occurred in different directions, which improved the diffusion of materials and DO retention. The system is effectively self-circulating, and the plug-flow capability may be scaled up for commercial application.

Author(s):  
Ranjan Saha ◽  
Jens Fridh ◽  
Torsten Fransson ◽  
Boris I. Mamaev ◽  
Mats Annerfeldt

An experimental study of the hub leading edge contouring using fillets is performed in an annular sector cascade to observe the influence of secondary flows and aerodynamic losses. The investigated vane is a three dimensional gas turbine guide vane (geometrically similar) with a mid-span aspect ratio of 0.46. The measurements are carried out on the leading edge fillet and baseline cases using pneumatic probes. Significant precautions have been taken to increase the accuracy of the measurements. The investigations are performed for a wide range of operating exit Mach numbers from 0.5 to 0.9 at a design inlet flow angle of 90°. Data presented include the loading, fields of total pressures, exit flow angles, radial flow angles, as well as profile and secondary losses. The vane has a small profile loss of approximately 2.5% and secondary loss of about 1.1%. Contour plots of vorticity distributions and velocity vectors indicate there is a small influence of the vortex-structure in endwall regions when the leading edge fillet is used. Compared to the baseline case the loss for the filleted case is lower up to 13% of span and higher from 13% to 20% of the span for a reference condition with Mach no. of 0.9. For the filleted case, there is a small increase of turning up to 15% of the span and then a small decrease up to 35% of the span. Hence, there are no significant influences on the losses and turning for the filleted case. Results lead to the conclusion that one cannot expect a noticeable effect of leading edge contouring on the aerodynamic efficiency for the investigated 1st stage vane of a modern gas turbine.


2008 ◽  
Vol 36 (4) ◽  
pp. 951-961
Author(s):  
Doheim, M. A ◽  
Abdel Gawad , A. F ◽  
Mahran, G. M. A. ◽  
Abu-Ali, M. H ◽  
Rizk, A. M.

Author(s):  
Wu Sang Lee ◽  
Jin Taek Chung ◽  
Dae Hyun Kim ◽  
Seung Joo Choe

The three-dimensional flow in a turbine nozzle guide vane passage causes large secondary loss through the passage and increased heat transfer on the blade surface. In order to reduce or control these secondary flows, a linear turbine with contoured endwall configurations was used and changes in the three-dimensional flow field were analyzed and discussed. Contoured endwalls are installed at a location downstream of the saddle point near the leading edge of the pressure side blade and several positions along the centerline of the passage at constant distance. The objective of this study is to document the development of the three-dimensional flow in a turbine nozzle guide vane cascade with modified endwall. In addition, it proposes and appropriates endwall contouring which shows best overall loss reduction performance among the simulated contoured endwall. The results of this study show that the development of passage vortex and cross flow in the cascade composed of one flat and one contoured endwalls are affected by the acceleration which occurs in contoured endwall side. The overall loss is reduced near the flat endwall rather than contoured endwall, the best performance was shown for the case of 10–15% contoured for span-wise, 40–70% length of chord from trailing edge.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
J. F. Zhang ◽  
S. Wang ◽  
M. J. Zeng ◽  
Z. G. Qu

Ionic wind pumps have attracted considerable interest because of their low energy consumption, compact structures, flexible designs, and lack of moving parts. However, large cross-sectional ionic wind pumps have yet to be numerically analyzed and experimentally optimized. Accordingly, this study develops a large cross-sectional ionic wind pump with multiple needles-to-mesh electrode, as well as analyzes its flow characteristics using a proposed full three-dimensional simulation method validated with experimental data. To obtain a considerably high outlet average velocity, experimental studies and numerical methods are employed to optimize the pump's configuration parameters, including needle electrode configuration, needle diameter, grid size, and gap between electrodes. The breakdown voltage and highest velocity corresponding to the breakdown voltage increase with an increase in the needle tip-to-mesh gap. After parametric optimization, a maximum velocity of 2.55 m/s and a flow rate of 2868 L/min are achieved.


2013 ◽  
Vol 727 ◽  
pp. 533-581 ◽  
Author(s):  
D. P. Wall ◽  
M. Nagata

AbstractThree-dimensional exact, finite-amplitude solutions are presented for the problem of channel flow subject to a system rotation about a spanwise axis. The solutions are of travelling wave form, and may bifurcate as tertiary flows from the two-dimensional streamwise-independent secondary flow, or as secondary flows directly from the basic flow. For the tertiary flows, we consider solutions of spanwise superharmonic and subharmonic type. We distinguish flows on the basis of symmetry, originating eigenmode and major solution branch, and thus identify 15 distinct flows: 5 superharmonic tertiary, 5 subharmonic tertiary and 5 secondary flows. The tertiary flows all feature a single layer of vortical structures in the spanwise–wall-normal plane, the secondary flows feature single-, double-, triple- or quadruple-layer flow structures in this plane. All flows feature low-speed streamwise-orientated streaks in the streamwise velocity component and/or pulses of low-speed streamwise velocity. The streaks may be sinusoidal or varicose. Sinusoidal streaks are flanked by staggered streamwise vortices, varicose streaks and pulses are flanked by aligned vortices. A comparison with previous simulation and experimental studies finds that the simplest three-dimensional flows observed previously correspond to superharmonic tertiary flows bifurcating from the upper branch of the secondary flow. The mean absolute vorticity of the present flows is also considered. A flattening of the profile of this vorticity is observed in the central region of the channel for two-dimensional secondary and many of the three-dimensional flows, with two-step profiles also observed. This phenomenon is attributed to mixing of the vorticity across zones of the channel in which streamwise vortex structures exist, and is demonstrated by a two-dimensional model. The phenomenon appears to be distinct to that observed in fully turbulent rotating channel flows.


Author(s):  
J. Schabacker ◽  
A. Boelcs ◽  
B. V. Johnson

Flow characteristics in a model of a stationary two-pass internal coolant passage were measured with the stereoscopic PIV technique. From the PIV measurements, the 3D mean velocity field and turbulence quantities of the flow were obtained simultaneously with high spatial resolution, which allowed for an understanding of the flow phenomena in the coolant passage. The model of the coolant passage consists of two square legs, each having a length of 19 hydraulic diameters that are connected by a sharp 180deg bend with a rectangular outer wall. In the two legs, 45deg ribs are mounted in a staggered arrangement on the bottom and top wall, with rib heights equal to 0.1 hydraulic diameter, and rib spacing of 10 rib heights. The measurements were carried out for a Reynolds number of 45,700 with air as working medium. The paper presents results of the flow development in the straight legs of the passage and in the bend. The oblique ribs in the straight legs contribute to the development of secondary flows that transport fluid from the leg center towards the walls. In the bend of the passage, the interaction between rib-induced and bend-induced secondary flows leads to a three-dimensional flow. Downstream of the bend, the ribs quickly dominate the flow and thus lead to a fast recovery of the flow from the bend effect.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1917
Author(s):  
Rawaa Shaheed ◽  
Xiaohui Yan ◽  
Abdolmajid Mohammadian

River confluences are a common feature in natural water resources. The flow characteristics in confluences are complicated, especially at junction areas between tributaries and the main river. One of the typical characteristics of confluences is secondary flow, which plays an important role in mixing, velocity, sediment transport, and pollutant dispersion. In addition to the experimental and field studies that have been conducted in this area, the development of computational fluid dynamics has allowed researchers in this field to use different numerical models to simulate turbulence properties in rivers, especially secondary flows. Nowadays, the hydrodynamics of flows in confluences are widely simulated by using three-dimensional models in order to fully capture the flow structures, as the flow characteristics are considered to be turbulent and three-dimensional at river junctions. Several numerical models have been recommended for this purpose, and various turbulence models have been used to simulate the flows at confluences. To assess the accuracy of turbulence models, flows have been predicted by applying different turbulence models in the numerical model and the results have been compared with other data, such as field, laboratory, and experimental data. The purpose behind these investigations was to find the suitable model for each case of turbulent flow and for different types of confluences. In this study, the performances of turbulence models for confluences are reviewed for different numerical simulation strategies.


Sign in / Sign up

Export Citation Format

Share Document