scholarly journals Gentamicin-loaded silk/nanosilver composite scaffolds for MRSA-induced chronic osteomyelitis

2019 ◽  
Vol 6 (5) ◽  
pp. 182102 ◽  
Author(s):  
Peng Zhang ◽  
Jianzhong Qin ◽  
Bo Zhang ◽  
Yi Zheng ◽  
Lingyan Yang ◽  
...  

Methicillin-resistant Staphylococcus aureus (MRSA) often induces chronic osteomyelitis and then bone defects. Here, gentamicin-loaded silk/nanosilver composite scaffolds were developed to treat MRSA-induced chronic osteomyelitis. AgNO 3 was reduced with silk as a reducing agent in formic acid, forming silver nanoparticles in situ that were distributed uniformly in the composite scaffolds. Superior antibacterial properties against MRSA were achieved for the composite scaffolds, without the compromise of osteogenesis capacity. Then gentamicin was loaded on the scaffolds for better treatment of osteomyelitis. In vivo results showed effective inhibition of the growth of MRSA bacteria, confirming the promising future in the treatment of chronic osteomyelitis.

2019 ◽  
Vol 14 (1) ◽  
pp. 97-110 ◽  
Author(s):  
Urvashi F. Gunputh ◽  
Huirong Le ◽  
Kiruthika Lawton ◽  
Alexandros Besinis ◽  
Christopher Tredwin ◽  
...  

2020 ◽  
Vol 2 (2) ◽  
pp. 61-68
Author(s):  
Agnina Listya Anggraini ◽  
Ratih Dewi Dwiyanti ◽  
Anny Thuraidah

Infection is a disease caused by the presence of pathogenic microbes, including Staphylococcus aureus and Escherichia coli. Garlic (Allium sativum L.) has chemical contents such as allicin, alkaloids, flavonoids, saponins, tannins, and steroids, which can function as an antibacterial against Staphylococcus aureus and Escherichia coli. This study aims to determine the antibacterial properties of garlic extract powder against Staphylococcus aureus and Escherichia coli. This research is the initial stage of the development of herbal medicines to treat Staphylococcus aureus and Escherichia coli infections. The antibacterial activity test was carried out by the liquid dilution method. The concentrations used were 30 mg/mL, 40 mg/mL, 50 mg/mL, 60 mg/mL and 70 mg/mL. The results showed that the Minimum Inhibitory Concentration (MIC) against Staphylococcus aureus and Escherichia coli was 40 mg/mL and 50 mg / mL. Minimum Bactericidal Concentration (MBC) results for Staphylococcus aureus and Escherichia coli are 50 mg/mL and 70 mg/mL. Based on the Simple Linear Regression test, the R2 value of Staphylococcus aureus and Escherichia coli is 0.545 and 0.785, so it can be concluded that there is an effect of garlic extract powder on the growth of Staphylococcus aureus and Escherichia coli by 54.5% and 78.5%. Garlic (Allium sativum L.) extract powder has potential as herbal medicine against bacterial infections but requires further research to determine its effect in vivo.


2012 ◽  
Author(s):  
João Alves dos Reis Júnior ◽  
Patrícia Nascimento de Assis ◽  
Garde^nia Matos Paraguassú ◽  
Isabele Cardoso Vieira de de Castro ◽  
Renan Ferreira Trindade ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Fujian Zhao ◽  
Xiongfa Ji ◽  
Yang Yan ◽  
Zhen Yang ◽  
Xiaofeng Chen ◽  
...  

The repair of bone defects in load-bearing positions still faces great challenges. Tantalum (Ta) has attempted to repair bone defects based on the excellent mechanical properties. However, the osseointegration of Ta needs to be improved due to the lack of osteoinduction. Herein, tantalum–gelatin–methacryloyl–bioactive glass (Ta–GelMA–BG) scaffolds were successfully fabricated by loading BG in 3D-printed Ta scaffolds through a chemical crosslinking method. The results showed that the composite scaffolds have the ability to promote cell adhesion and proliferation. The incorporation of BG resulted in a significant increase in apatite-forming and osteogenesis differentiation abilities. In vivo results indicated that the Ta–GelMA–BG scaffolds significantly enhanced the osteointegration at the early stage after implantation. Overall, the Ta–GelMA–BG scaffolds are a promising platform for the load bearing bone regeneration field.


2018 ◽  
Vol 7 (1) ◽  
pp. 46-57 ◽  
Author(s):  
J. Zhou ◽  
X. G. Zhou ◽  
J. W. Wang ◽  
H. Zhou ◽  
J. Dong

Objective In the present study, we aimed to assess whether gelatin/β-tricalcium phosphate (β-TCP) composite porous scaffolds could be used as a local controlled release system for vancomycin. We also investigated the efficiency of the scaffolds in eliminating infections and repairing osteomyelitis defects in rabbits. Methods The gelatin scaffolds containing differing amounts of of β-TCP (0%, 10%, 30% and 50%) were prepared for controlled release of vancomycin and were labelled G-TCP0, G-TCP1, G-TCP3 and G-TCP5, respectively. The Kirby-Bauer method was used to examine the release profile. Chronic osteomyelitis models of rabbits were established. After thorough debridement, the osteomyelitis defects were implanted with the scaffolds. Radiographs and histological examinations were carried out to investigate the efficiency of eliminating infections and repairing bone defects. Results The prepared gelatin/β-TCP scaffolds exhibited a homogeneously interconnected 3D porous structure. The G-TCP0 scaffold exhibited the longest duration of vancomycin release with a release duration of eight weeks. With the increase of β-TCP contents, the release duration of the β-TCP-containing composite scaffolds was decreased. The complete release of vancomycin from the G-TCP5 scaffold was achieved within three weeks. In the treatment of osteomyelitis defects in rabbits, the G-TCP3 scaffold showed the most efficacious performance in eliminating infections and repairing bone defects. Conclusions The composite scaffolds could achieve local therapeutic drug levels over an extended duration. The G-TCP3 scaffold possessed the optimal porosity, interconnection and controlled release performance. Therefore, this scaffold could potentially be used in the treatment of chronic osteomyelitis defects. Cite this article: J. Zhou, X. G. Zhou, J. W. Wang, H. Zhou, J. Dong. Treatment of osteomyelitis defects by a vancomycin-loaded gelatin/β-tricalcium phosphate composite scaffold. Bone Joint Res 2018;7:46–57. DOI: 10.1302/2046-3758.71.BJR-2017-0129.R2.


RSC Advances ◽  
2020 ◽  
Vol 10 (68) ◽  
pp. 41600-41611
Author(s):  
A. Farouk ◽  
S. El-Sayed Saeed ◽  
S. Sharaf ◽  
M. M. Abd El-Hady

Silver nanoparticles were in situ prepared on the surface of linen fabric coated by graphene oxide (GO).


Clay Minerals ◽  
2020 ◽  
Vol 55 (2) ◽  
pp. 112-119
Author(s):  
Anna Stavitskaya ◽  
Christina Shakhbazova ◽  
Yulia Cherednichenko ◽  
Läysän Nigamatzyanova ◽  
Gölnur Fakhrullina ◽  
...  

AbstractTannic acid-stabilized silver nanoparticles were synthesized in situ on halloysite clay nanotubes. The synthesis strategy included simple steps of tannic acid adsorption on clay nanotubes and further particle formation from silver salt solution. Pristine halloysite nanotubes as well as amino-modified clays were used for silver stabilization in water or ethanol. The materials were tested for antibacterial performance using three different methods. All of the materials produced showed antimicrobial activity. The pristine halloysite-based material with ~5 nm particles produced using ethanol as the solvent and tannic acid as the reducing agent showed the greatest antibacterial activity against Serratia marcescens. The materials were tested in vivo on Caenorhabditis elegans nematodes to ensure their safety, and they showed no negative effects on nematode growth and life expectancy.


Nanoscale ◽  
2020 ◽  
Vol 12 (14) ◽  
pp. 7651-7659 ◽  
Author(s):  
Xujuan Guo ◽  
Bing Cao ◽  
Congyu Wang ◽  
Siyu Lu ◽  
Xianglong Hu

Herein, pathogen-targeting phototheranostic nanoparticles, Van-OA@PPy, are in situ developed for efficient elimination of MRSA infection, which is reflected by dual-modality magnetic resonance and photoacoustic imaging.


2013 ◽  
Vol 57 (10) ◽  
pp. 4945-4955 ◽  
Author(s):  
Divya Prakash Gnanadhas ◽  
Midhun Ben Thomas ◽  
Rony Thomas ◽  
Ashok M. Raichur ◽  
Dipshikha Chakravortty

ABSTRACTThe emergence of multidrug-resistant bacteria is a global threat for human society. There exist recorded data that silver was used as an antimicrobial agent by the ancient Greeks and Romans during the 8th century. Silver nanoparticles (AgNPs) are of potential interest because of their effective antibacterial and antiviral activities, with minimal cytotoxic effects on the cells. However, very few reports have shown the usage of AgNPs for antibacterial therapyin vivo. In this study, we deciphered the importance of the chosen methods for synthesis and capping of AgNPs for their improved activityin vivo. The interaction of AgNPs with serum albumin has a significant effect on their antibacterial activity. It was observed that uncapped AgNPs exhibited no antibacterial activity in the presence of serum proteins, due to the interaction with bovine serum albumin (BSA), which was confirmed by UV-Vis spectroscopy. However, capped AgNPs [with citrate or poly(vinylpyrrolidone)] exhibited antibacterial properties due to minimized interactions with serum proteins. The damage in the bacterial membrane was assessed by flow cytometry, which also showed that only capped AgNPs exhibited antibacterial properties, even in the presence of BSA. In order to understand thein vivorelevance of the antibacterial activities of different AgNPs, a murine salmonellosis model was used. It was conclusively proved that AgNPs capped with citrate or PVP exhibited significant antibacterial activitiesin vivoagainstSalmonellainfection compared to uncapped AgNPs. These results clearly demonstrate the importance of capping agents and the synthesis method for AgNPs in their use as antimicrobial agents for therapeutic purposes.


Sign in / Sign up

Export Citation Format

Share Document