scholarly journals The use of nanobodies in a sensitive ELISA test for SARS-CoV-2 Spike 1 protein

2021 ◽  
Vol 8 (9) ◽  
Author(s):  
Georgina C. Girt ◽  
Abirami Lakshminarayanan ◽  
Jiandong Huo ◽  
Joshua Dormon ◽  
Chelsea Norman ◽  
...  

Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens in the fluid has important uses in biotechnology, and is integral to many point-of-care SARS-CoV-2 diagnostics. Sandwich enzyme-linked immunosorbent assays (ELISAs) are a sensitive, well-established method of measuring antigens in solutions. They use one ligand to capture and the other ligand to detect the target analyte. Detection is commonly achieved using colorimetric readout obtained upon the reaction of a substrate with HRP-conjugated secondary ligand. Nanobodies, the V H H domain of camelid antibodies, have expanded the repertoire of molecules used in antigen detection. Nanobodies' high affinity for target antigens, their compact structure, their high stability and ease of production has driven research into their use as diagnostic reagents. Guided by a structural understanding of epitopes on the receptor-binding domain of the SARS-CoV-2 Spike protein, we investigated various combinations of engineered nanobodies in a sandwich ELISA to detect the Spike protein of SARS-CoV-2. We have identified an optimal combination of nanobodies. These were selectively functionalized to further improve antigen capture, enabling the measurement of sub-picomolar amounts of SARS-CoV-2 Spike protein in solution. With this combination, the routine detection limit in samples inactivated by heat and detergent corresponded to less than seven focus-forming units of infectious SARS-CoV-2.

2020 ◽  
Author(s):  
Douglas F. Lake ◽  
Alexa J. Roeder ◽  
Erin Kaleta ◽  
Paniz Jasbi ◽  
Sivakumar Periasamy ◽  
...  

As increasing numbers of people recover from and are vaccinated against COVID-19, tests are needed to measure levels of protective, neutralizing antibodies longitudinally to help determine duration of immunity. We developed a lateral flow assay (LFA) that measures levels of neutralizing antibodies in plasma, serum or whole blood. The LFA is based on the principle that neutralizing antibodies inhibit binding of the spike protein receptor-binding domain (RBD) to angiotensin-converting enzyme 2 (ACE2). The test classifies high levels of neutralizing antibodies in sera that were titered using authentic SARS-CoV-2 and pseudotype neutralization assays with an accuracy of 98%. Sera obtained from patients with seasonal coronavirus did not prevent RBD from binding to ACE2. As a demonstration for convalescent plasma therapy, we measured conversion of non-immune plasma into strongly neutralizing plasma. This is the first report of a neutralizing antibody test that is rapid, highly portable and relatively inexpensive that might be useful in assessing COVID-19 vaccine immunity.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1043
Author(s):  
Tove Hoffman ◽  
Linda Kolstad ◽  
Bengt Rönnberg ◽  
Åke Lundkvist

The potential of rapid point-of-care (POC) tests has been subject of doubt due to an eventual risk of production errors. The aim was therefore to evaluate the two separate production lots of a commercial POC lateral flow test, intended for the detection of IgM and IgG against the SARS-CoV-2 spike protein (S1). Control samples consisted of serum from individuals with confirmed SARS-CoV-2 infection and pre-COVID-19 negative sera gathered from a biobank. The presence of anti-S1 IgM/IgG in the sera was verified by an in-house Luminex-based serological assay (COVID-19 SIA). One hundred samples were verified as positive for anti-S1 IgG and 74 for anti-S1 IgM. Two hundred samples were verified as negative for anti-S1 IgM/IgG. For the two lots of the POC-test, the sensitivities were 93.2% and 87.8% for IgM and 93.0% and 100% for IgG. The specificities were 100% for IgM and 99.5% for IgG. The positive predictive value was 100% for IgM and 98.9% and 99.0% for IgG. The negative predictive value was 97.6% and 95.7% for IgM, and 96.6% and 100% for IgG. The evaluated POC-test is suitable to assess anti-SARS-CoV-2 S1 IgM and IgG, as a measure of previous virus exposure on an individual level. The external validation of separate lots of rapid POC-tests is encouraged to ensure high sensitivity before market introduction.


2021 ◽  
pp. eabd6990
Author(s):  
Sang Il Kim ◽  
Jinsung Noh ◽  
Sujeong Kim ◽  
Younggeun Choi ◽  
Duck Kyun Yoo ◽  
...  

Stereotypic antibody clonotypes exist in healthy individuals and may provide protective immunity against viral infections by neutralization. We observed that 13 out of 17 patients with COVID-19 had stereotypic variable heavy chain (VH) antibody clonotypes directed against the receptor-binding domain (RBD) of SARS-CoV-2 spike protein. These antibody clonotypes were comprised of immunoglobulin heavy variable (IGHV)3-53 or IGHV3-66 and immunoglobulin heavy joining (IGHJ)6 genes. These clonotypes included IgM, IgG3, IgG1, IgA1, IgG2, and IgA2 subtypes and had minimal somatic mutations, which suggested swift class switching after SARS-CoV-2 infection. The different immunoglobulin heavy variable chains were paired with diverse light chains resulting in binding to the RBD of SARS-CoV-2 spike protein. Human antibodies specific for the RBD can neutralize SARS-CoV-2 by inhibiting entry into host cells. We observed that one of these stereotypic neutralizing antibodies could inhibit viral replication in vitro using a clinical isolate of SARS-CoV-2. We also found that these VH clonotypes existed in six out of 10 healthy individuals, with IgM isotypes predominating. These findings suggest that stereotypic clonotypes can develop de novo from naïve B cells and not from memory B cells established from prior exposure to similar viruses. The expeditious and stereotypic expansion of these clonotypes may have occurred in patients infected with SARS-CoV-2 because they were already present.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Alice Massacci ◽  
Eleonora Sperandio ◽  
Lorenzo D’Ambrosio ◽  
Mariano Maffei ◽  
Fabio Palombo ◽  
...  

Abstract Background Tracking the genetic variability of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) is a crucial challenge. Mainly to identify target sequences in order to generate robust vaccines and neutralizing monoclonal antibodies, but also to track viral genetic temporal and geographic evolution and to mine for variants associated with reduced or increased disease severity. Several online tools and bioinformatic phylogenetic analyses have been released, but the main interest lies in the Spike protein, which is the pivotal element of current vaccine design, and in the Receptor Binding Domain, that accounts for most of the neutralizing the antibody activity. Methods Here, we present an open-source bioinformatic protocol, and a web portal focused on SARS-CoV-2 single mutations and minimal consensus sequence building as a companion vaccine design tool. Furthermore, we provide immunogenomic analyses to understand the impact of the most frequent RBD variations. Results Results on the whole GISAID sequence dataset at the time of the writing (October 2020) reveals an emerging mutation, S477N, located on the central part of the Spike protein Receptor Binding Domain, the Receptor Binding Motif. Immunogenomic analyses revealed some variation in mutated epitope MHC compatibility, T-cell recognition, and B-cell epitope probability for most frequent human HLAs. Conclusions This work provides a framework able to track down SARS-CoV-2 genomic variability.


Author(s):  
M. Dutta ◽  
S. Chilukuru ◽  
L. Ramasamy ◽  
Xiaoshan Zhu ◽  
Jaephil Do ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document