scholarly journals Comparative radiographic analysis of three-dimensional innate mobility of the foot bones under axial loading of humans and African great apes

2021 ◽  
Vol 8 (11) ◽  
Author(s):  
Takuo Negishi ◽  
Kohta Ito ◽  
Koh Hosoda ◽  
Takeo Nagura ◽  
Tomohiko Ota ◽  
...  

The human foot is considered to be morphologically adapted for habitual bipedal locomotion. However, how the mobility and mechanical interaction of the human foot with the ground under a weight-bearing condition differ from those of African great apes is not well understood. We compared three-dimensional (3D) bone kinematics of cadaver feet under axial loading of humans and African great apes using a biplanar X-ray fluoroscopy system. The calcaneus was everted and the talus and tibia were internally rotated in the human foot, but such coupling motion was much smaller in the feet of African great apes, possibly due to the difference in morphology of the foot bones and articular surfaces. This study also found that the changes in the length of the longitudinal arch were larger in the human foot than in the feet of chimpanzees and gorillas, indicating that the human foot is more deformable, possibly to allow storage and release of the elastic energy during locomotion. The coupling motion of the calcaneus and the tibia, and the larger capacity to be flattened due to axial loading observed in the human foot are possibly morphological adaptations for habitual bipedal locomotion that has evolved in the human lineage.

2017 ◽  
Vol 4 (10) ◽  
pp. 171086 ◽  
Author(s):  
Kohta Ito ◽  
Koh Hosoda ◽  
Masahiro Shimizu ◽  
Shuhei Ikemoto ◽  
Takeo Nagura ◽  
...  

The anatomical design of the human foot is considered to facilitate generation of bipedal walking. However, how the morphology and structure of the human foot actually contribute to generation of bipedal walking remains unclear. In the present study, we investigated the three-dimensional kinematics of the foot bones under a weight-bearing condition using cadaver specimens, to characterize the innate mobility of the human foot inherently prescribed in its morphology and structure. Five cadaver feet were axially loaded up to 588 N (60 kgf), and radiographic images were captured using a biplane X-ray fluoroscopy system. The present study demonstrated that the talus is medioinferiorly translated and internally rotated as the calcaneus is everted owing to axial loading, causing internal rotation of the tibia and flattening of the medial longitudinal arch in the foot. Furthermore, as the talus is internally rotated, the talar head moves medially with respect to the navicular, inducing external rotation of the navicular and metatarsals. Under axial loading, the cuboid is everted simultaneously with the calcaneus owing to the osseous locking mechanism in the calcaneocuboid joint. Such detailed descriptions about the innate mobility of the human foot will contribute to clarifying functional adaptation and pathogenic mechanisms of the human foot.


Author(s):  
Kohta Ito ◽  
Tomoya Nakamura ◽  
Ryo Suzuki ◽  
Takuo Negishi ◽  
Motoharu Oishi ◽  
...  

To comparatively investigate the morphological adaptation of the human foot for achieving robust and efficient bipedal locomotion, we develop three-dimensional finite element models of the human and chimpanzee feet. Foot bones and the outer surface of the foot are extracted from computer tomography images and meshed with tetrahedral elements. The ligaments and plantar fascia are represented by tension-only spring elements. The contacts between the bones and between the foot and ground are solved using frictionless and Coulomb friction contact algorithms, respectively. Physiologically realistic loading conditions of the feet during quiet bipedal standing are simulated. Our results indicate that the center of pressure (COP) is located more anteriorly in the human foot than in the chimpanzee foot, indicating a larger stability margin in bipedal posture in humans. Furthermore, the vertical free moment generated by the coupling motion of the calcaneus and tibia during axial loading is larger in the human foot, which can facilitate the compensation of the net yaw moment of the body around the COP during bipedal locomotion. Furthermore, the human foot can store elastic energy more effectively during axial loading for the effective generation of propulsive force in the late stance phase. This computational framework for a comparative investigation of the causal relationship among the morphology, kinematics, and kinetics of the foot may provide a better understanding regarding the functional significance of the morphological features of the human foot.


2019 ◽  
Vol 23 (06) ◽  
pp. 643-656 ◽  
Author(s):  
Alberto Leardini ◽  
Stefano Durante ◽  
Claudio Belvedere ◽  
Paolo Caravaggi ◽  
Claudio Carrara ◽  
...  

AbstractMusculoskeletal radiology has been mostly limited by the option between imaging under load but in two dimensions (i.e., radiographs) and three-dimensional (3D) scans but in unloaded conditions (i.e., computed tomography [CT] and magnetic resonance imaging in a supine position). Cone-beam technology is now also a way to image the extremities with 3D and weight-bearing CT. This article discusses the initial experience over a few studies in progress at an orthopaedic center. The custom design of total ankle replacements, the patellofemoral alignment after medial ligament reconstruction, the overall architecture of the foot bones in the diabetic foot, and the radiographic assessment of the rearfoot after subtalar fusion for correction of severe flat foot have all taken advantage of the 3D and weight-bearing feature of relevant CT scans. To further support these novel assessments, techniques have been developed to obtain 3D models of the bones from the scans and to merge these with state-of-the-art gait analyses.


Author(s):  
Kenneth H. Downing

Three-dimensional structures of a number of samples have been determined by electron crystallography. The procedures used in this work include recording images of fairly large areas of a specimen at high tilt angles. There is then a large defocus ramp across the image, and parts of the image are far out of focus. In the regions where the defocus is large, the contrast transfer function (CTF) varies rapidly across the image, especially at high resolution. Not only is the CTF then difficult to determine with sufficient accuracy to correct properly, but the image contrast is reduced by envelope functions which tend toward a low value at high defocus.We have combined computer control of the electron microscope with spot-scan imaging in order to eliminate most of the defocus ramp and its effects in the images of tilted specimens. In recording the spot-scan image, the beam is scanned along rows that are parallel to the tilt axis, so that along each row of spots the focus is constant. Between scan rows, the objective lens current is changed to correct for the difference in specimen height from one scan to the next.


1983 ◽  
Vol 218 (1210) ◽  
pp. 119-126 ◽  

The number of iron atoms in the dimeric iron-containing superoxide dismutase from Pseudomonas ovalis and their atomic positions have been determined directly from anomalous scattering measurements on crystals of the native enzyme. To resolve the long-standing question of the total amount of iron per molecule for this class of dismutase, the occupancy of each site was refined against the measured Bijvoet differences. The enzyme is a symmetrical dimer with one iron site in each subunit. The iron position is 9 ņ from the intersubunit interface. The total iron content of the dimer is 1.2±0.2 moles per mole of protein. This is divided between the subunits in the ratio 0.65:0.55; the difference between them is probably not significant. Since each subunit contains, on average, slightly more than half an iron atom we conclude that the normal state of this enzyme is two iron atoms per dimer but that some of the metal is lost during purification of the protein. Although the crystals are obviously a mixture of holo- and apo-enzymes, the 2.9 Å electron density map is uniformly clean, even at the iron site. We conclude that the three-dimensional structures of the iron-bound enzyme and the apoenzyme are identical.


1996 ◽  
Vol 10 (28) ◽  
pp. 1397-1406 ◽  
Author(s):  
AXEL VÖLKER ◽  
PETER KOPIETZ

We use the Lanczos method to calculate the variance σ2(E, ϕ) of the number of energy levels in an energy window of width E below the Fermi energy for noninteracting disordered electrons on a thin three-dimensional ring threaded by an Aharonov–Bohm flux ϕ. We confirm numerically that for small E the flux-dependent part of σ2(E, ϕ) is well described by the Altshuler–Shklovskii-diagram involving two Cooperons. However, in the absence of electron–electron interactions this result cannot be extrapolated to energies E where the energy-dependence of the average density of states becomes significant. We discuss consequences for persistent currents and argue that for the calculation of the difference between the canonical- and grand canonical current it is crucial to take the electron–electron interaction into account.


1976 ◽  
Vol 54 (14) ◽  
pp. 1454-1460 ◽  
Author(s):  
T. Tiedje ◽  
R. R. Haering

The theory of ultrasonic attenuation in metals is extended so that it applies to quasi one and two dimensional electronic systems. It is shown that the attenuation in such systems differs significantly from the well-known results for three dimensional systems. The difference is particularly marked for one dimensional systems, for which the attenuation is shown to be strongly temperature dependent.


1986 ◽  
Vol 1 (2) ◽  
pp. 15-21 ◽  
Author(s):  
J. B. Cohen

AbstractAlthough there is mounting interest in the measurement of stresses in composite materials after fabrication and/or use, few measurements to date have not taken into account the three dimensional nature of the stress system in such materials. Most data give only the net stress, that is, the difference between principal stresses. A procedure for a more complete measurement (in a reasonable time) is developed here, including the separation of macrostresses and microstresses. If time does not permit a full investigation, measurements of the lattice parameters of the component phases provide a simple way to sample the hydrostatic component due to differential thermal contraction. The Barrett-Predecki method of adding filler is particularly promising for stress measurements in those composites whose component phases do not give appropriate diffraction peaks. This procedure could also be used for monitoring stresses during the useful life of such materials.


2016 ◽  
Vol 90 (19) ◽  
pp. 8531-8541 ◽  
Author(s):  
Nadège F. Madinda ◽  
Bernhard Ehlers ◽  
Joel O. Wertheim ◽  
Chantal Akoua-Koffi ◽  
Richard A. Bergl ◽  
...  

ABSTRACTIt has long been hypothesized that polyomaviruses (PyV; familyPolyomaviridae) codiverged with their animal hosts. In contrast, recent analyses suggested that codivergence may only marginally influence the evolution of PyV. We reassess this question by focusing on a single lineage of PyV infecting hominine hosts, the Merkel cell polyomavirus (MCPyV) lineage. By characterizing the genetic diversity of these viruses in seven African great ape taxa, we show that they exhibit very strong host specificity. Reconciliation analyses identify more codivergence than noncodivergence events. In addition, we find that a number of host and PyV divergence events are synchronous. Collectively, our results support codivergence as the dominant process at play during the evolution of the MCPyV lineage. More generally, our results add to the growing body of evidence suggesting an ancient and stable association of PyV and their animal hosts.IMPORTANCEThe processes involved in viral evolution and the interaction of viruses with their hosts are of great scientific interest and public health relevance. It has long been thought that the genetic diversity of double-stranded DNA viruses was generated over long periods of time, similar to typical host evolutionary timescales. This was also hypothesized for polyomaviruses (familyPolyomaviridae), a group comprising several human pathogens, but this remains a point of controversy. Here, we investigate this question by focusing on a single lineage of polyomaviruses that infect both humans and their closest relatives, the African great apes. We show that these viruses exhibit considerable host specificity and that their evolution largely mirrors that of their hosts, suggesting that codivergence with their hosts played a major role in their diversification. Our results provide statistical evidence in favor of an association of polyomaviruses and their hosts over millions of years.


Sign in / Sign up

Export Citation Format

Share Document