scholarly journals The uniform circular motion with invariable normal spin of a rigidly and uniformly electrified sphere, IV

In order to exhibit clearly and fully the possibilities inherent in classical electrodynamics when it is developed rigorously without approximations or unnecessary restrictions I have in this paper worked out completely the case in which the centre of the sphere describes a circle with any uniform speed less than that of light whilst it is spinning about a diameter normal to the plane of the circle with an invariable angular velocity unrestricted in magnitude or sense. It is to be noted that, although the speed of the centre is assumed for the sake of simplicity to be less than that of light, that of points on the surface of the sphere (other than the ends of the axis of spin) can be as large as we please. In §§ 2–5 general expressions for the tangential and normal force constituents and the couple constituent of the total reaction on the sphere of its own electromagnetic field are obtained from the general expressions given in paper III (§ 8), and the resulting equations of motion are written down (cf. (2·1)–(2·3) and (5·7)). There are two points to be noticed: (1) the tangential and normal force constituents are quadratic polynomials in the spin p with coefficients depending on the speed cβ of the centre and the radius R of its orbit, whilst the couple constituent is linear in p ; these results are true for any orbit with invariable spin. (2) The couple is found in § 5 to vanish identically, i. e. for all values of p, β and R , in the case of a circular orbit, owing to its symmetry with respect to a diameter; for this reason the result is probably peculiar to this class of orbit.

1984 ◽  
Vol 62 (10) ◽  
pp. 943-947
Author(s):  
Bruce Hoeneisen

We consider particles with mass, charge, intrinsic magnetic and electric dipole moments, and intrinsic angular momentum in interaction with a classical electromagnetic field. From this action we derive the equations of motion of the position and intrinsic angular momentum of the particle including the radiation reaction, the wave equations of the fields, the current density, and the energy-momentum and angular momentum of the system. The theory is covariant with respect to the general Lorentz group, is gauge invariant, and contains no divergent integrals.


1979 ◽  
Vol 101 (3) ◽  
pp. 293-302 ◽  
Author(s):  
P. K. Gupta

An analytical formulation for the roller motion in a cylindrical roller bearing is presented in terms of the classical differential equations of motion. Roller-race interaction is analyzed in detail and the resulting normal force and moment vectors are determined. Elastohydrodynamic traction models are considered in determining the roller-race tractive forces and moments. Formulation for the roller end and race flange interaction during skewing of the roller is also considered. Roller-cage interactions are assumed to be either hydrodynamic or fully metallic. Simple relationships are used to determine the churning and drag losses.


Author(s):  
J. Pierrus

In 1905, when Einstein published his theory of special relativity, Maxwell’s work was already about forty years old. It is therefore both remarkable and ironic (recalling the old arguments about the aether being the ‘preferred’ reference frame for describing wave propagation) that classical electrodynamics turned out to be a relativistically correct theory. In this chapter, a range of questions in electromagnetism are considered as they relate to special relativity. In Questions 12.1–12.4 the behaviour of various physical quantities under Lorentz transformation is considered. This leads to the important concept of an invariant. Several of these are encountered, and used frequently throughout this chapter. Other topics considered include the transformationof E- and B-fields between inertial reference frames, the validity of Gauss’s law for an arbitrarily moving point charge (demonstrated numerically), the electromagnetic field tensor, Maxwell’s equations in covariant form and Larmor’s formula for a relativistic charge.


1974 ◽  
Vol 76 (1) ◽  
pp. 359-367 ◽  
Author(s):  
P. A. Hogan

In this paper we derive the Lorentz-Dirac equation of motion for a charged particle moving in an external electromagnetic field. We use Maxwell's electromagnetic field equations together with the assumptions (1) that all fields are retarded and (2) that the 4-force acting on the charged particle is a Lorentz 4-force. To define the self-field on the world-line of the charge we utilize a contour integral representation for the field due to A. W. Conway. This by-passes the need to define an ‘average field’. In an appendix the case of a scalar field is briefly discussed.


Author(s):  
Michael Puopolo ◽  
J. D. Jacob

A mathematical model is developed for a rolling robot with a cylindrically-shaped, elliptical outer surface that has the ability to alter its shape as it rolls, resulting in a torque imbalance that accelerates or decelerates the robot. A control scheme is implemented, whereby angular position and angular velocity are used as feedback to trigger and define morphing actuation. The goal of the control is to direct the robot to follow a given angular velocity profile. Equations of motion for the rolling robot are formulated and solved numerically. Results show that by automatically morphing its shape in a periodic fashion, the rolling robot is able to start from rest, achieve constant average velocity and slow itself in order to follow a desired velocity profile with significant accuracy.


1997 ◽  
Vol 11 (12) ◽  
pp. 531-540
Author(s):  
V. Onoochin

An experiment within the framework of classical electrodynamics is proposed, to demonstrate Boyer's suggestion of a change in the velocity of a charged particle as it passes close to a solenoid. The moving charge is replaced by an ultra-short pulse (USP), whose characteristics should depend on the current in the coil. This dependence results from the exchange of energy between the electromagnetic field of the pulse and the magnetic field within the solenoid. This energy exchange could only be explained, by assuming that the vector potential of the solenoid has a direct influence on the pulse.


1963 ◽  
Vol 41 (12) ◽  
pp. 2241-2251 ◽  
Author(s):  
M. G. Calkin

The equations of motion of an inviscid, infinitely conducting fluid in an electromagnetic field are transformed into a form suitable for an action principle. An action principle from which these equations may be derived is found. The conservation laws follow from invariance properties of the action. The space–time invariances lead to the conservation of momentum, energy, angular momentum, and center of mass, while the gauge invariances lead to conservation of mass, a generalization of the Helmholtz vortex theorem of hydrodyanmics, and the conservation of the volume integrals of A∙B and v∙B, where A is the vector potential, B is the magnetic induction, and v is the fluid velocity.


Sign in / Sign up

Export Citation Format

Share Document