scholarly journals Homogenized boundary conditions and resonance effects in Faraday cages

Author(s):  
D. P. Hewett ◽  
I. J. Hewitt

We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called ‘Faraday cage effect’). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells.

2014 ◽  
Vol 532 ◽  
pp. 316-319 ◽  
Author(s):  
Ferid Köstekci

The aim of this paper is to examine the natural frequencies of beams for different flexural stiffness, internal simple support locations and axial moving speed. In the present investigation, the linear transverse vibrations of an axially translating beam are considered based on Euler-Bernoulli model. The beam is passing through two frictionless guides and has an internal simple support between the guides. The governing differential equations of motion are derived using Hamiltons Principle for two regions of the beam. The method of multiple scales is employed to obtain approximate analytical solution. Some numerical calculations are conducted to present the effects of flexural rigidity, mean translating speed and different internal support locations on natural frequencies.


1995 ◽  
Vol 117 (2) ◽  
pp. 199-205 ◽  
Author(s):  
A. H. Nayfeh ◽  
S. A. Nayfeh

We use two approaches to determine the nonlinear modes and natural frequencies of a simply supported Euler-Bernoulli beam resting on an elastic foundation with distributed quadratic and cubic nonlinearities. In the first approach, we use the method of multiple scales to treat the governing partial-differential equation and boundary conditions directly. In the second approach, we use a Galerkin procedure to discretize the system and then determine the normal modes from the discretized equations by using the method of multiple scales and the invariant manifold approach. Whereas one- and two-mode discretizations produce erroneous results for continuous systems with quadratic and cubic nonlinearities, all methods, in the present case, produce the same results because the discretization is carried out by using a complete set of basis functions that satisfy the boundary conditions.


Author(s):  
Haider N. Arafat ◽  
Ali H. Nayfeh

The forced nonlinear dynamics of a pre-buckled thermally loaded annular plate are investigated. The plate is modeled using the von Ka´rma´n plate theory and the heat equation. The heat, which is generated by the difference between the uniformly distributed temperatures at the inner and outer boundaries, is assumed to symmetrically flow in the radial direction. The amount of heat affects the natural frequencies, which may give rise to different internal resonance conditions. The method of multiple scales is used to examine the system axisymmetric responses when it is driven by an external multi-frequency excitation. The plate responses could be very complex exhibiting Hopf and cyclic-fold bifurcations, quasi-periodicity, chaos, and multiplicity of attractors.


2018 ◽  
Vol 25 (3) ◽  
pp. 485-496 ◽  
Author(s):  
Vamsi C. Meesala ◽  
Muhammad R. Hajj

The distributed parameter governing equations of a cantilever beam with a tip mass subjected to principal parametric excitation are developed using a generalized Hamilton's principle. Using a Galerkin's discretization scheme, the discretized equation for the first mode is developed for simpler representation assuming linear and nonlinear boundary conditions. The discretized governing equation considering the nonlinear boundary conditions assumes a simpler form. We solve the distributed parameter and discretized equations separately using the method of multiple scales. Through comparison with the direct approach, we show that accounting for the nonlinear boundary conditions boundary conditions is important for accurate prediction in terms of type of bifurcation and response amplitude.


2019 ◽  
Vol 29 (10) ◽  
pp. 1950132
Author(s):  
Hua-Zhen An ◽  
Xiao-Dong Yang ◽  
Feng Liang ◽  
Wei Zhang ◽  
Tian-Zhi Yang ◽  
...  

In this paper, we investigate systematically the vibration of a typical 2DOF nonlinear system with repeated linearized natural frequencies. By application of Descartes’ rule of signs, we demonstrate that there are 14 types of roots describing different modal motions for varying nonlinear parameters. The method of multiple scales is used to obtain the amplitude-phase portraits by introducing the energy ratios and phase differences. The typical nonlinear in-unison and elliptic out-of-unison modal motions are located for the 14 types of roots and then validated by numerical simulations. It is found that the normal in-unison modal motions, elliptic out-of-unison modal motions are analogous to the polarization of classical optic theory. Further, some kinds of periodic and chaotic motions under out-of-unison and in-unison excitations are investigated numerically. The result of this study offers a detailed discussion of nonlinear modal motions and responses of 2DOF systems with cubic nonlinear terms.


1994 ◽  
Vol 116 (1) ◽  
pp. 129-136 ◽  
Author(s):  
A. H. Nayfeh ◽  
S. A. Nayfeh

We use several methods to study the nonlinear modes of one-dimensional continuous systems with cubic inertia and geometric nonlinearities. Invariant manifold and perturbation methods applied to the discretized system and the method of multiple scales applied to the partial-differential equation and boundary conditions are discussed and their equivalence is demonstrated. The method of multiple scales is then applied directly to the partial-differential equation and boundary conditions governing several nonlinear beam problems.


Author(s):  
Kimihiko Yasuda ◽  
Mitsuhiro Kato

Abstract The occurrence of combination tones in a string subjected to two harmonic excitations is considered. Attention is focused on the case in which the sum or difference of the excitation frequencies is near one of the natural frequencies of the string. To analyze the problem, the method of multiple scales is used. In analyzing the problem it is taken into account that a string has its natural frequencies in the ratio of prime integers. 1 : 2 : 3 : ⋯. The analysis shows that, due to this, the combination tones with various characters can occur.


Author(s):  
Dumitru I. Caruntu

This paper presents an approach for finding the solution of the partial differential equation of motion of the non-axisymmetrical transverse vibrations of axisymmetrical circular plates of convex parabolical thickness. This approach employed both the method of multiple scales and the factorization method for solving the governing partial differential equation. The solution has been assumed to be harmonic angular-dependent. Using the method of multiple scales, the partial differential equation has been reduced to two simpler partial differential equations which can be analytically solved and which represent two levels of approximation. Solving them, the solution resulted as first-order approximation of the exact solution. Using the factorization method, the first differential equation, homogeneous and consisting of fourth-order spatial-dependent and second-order time-dependent operators, led to a general solution in terms of hypergeometric functions. Along with given boundary conditions, the first differential equation and the second differential equation, which was nonhomogeneous, gave respectively so-called zero-order and first-order approximations of the natural frequencies and mode shapes. Any boundary conditions could be considered. The influence of Poisson’s ratio on the natural frequencies and mode shapes. Any boundary conditions could be considered. The influence of Poisson’s ratio on the natural frequencies and mode shapes could be further studied using the first-order approximations reported here. This approach can be extended to nonlinear, and/or forced vibrations.


2016 ◽  
Vol 2016 ◽  
pp. 1-13
Author(s):  
J. E. Chen ◽  
W. Zhang ◽  
M. Sun ◽  
M. H. Yao

The dynamic characteristics of simply supported pyramidal truss core sandwich beam are investigated. The nonlinear governing equation of motion for the beam is obtained by using a Zig-Zag theory. The averaged equations of the beam with primary, subharmonic, and superharmonic resonances are derived by using the method of multiple scales and then the corresponding frequency response equations are obtained. The influences of strut radius and core height on the linear natural frequencies and hardening behaviors of the beam are studied. It is illustrated that the first-order natural frequency decreases continuously and the second-order and third-order natural frequencies initially increase and then decrease with the increase of strut radius, and the first three natural frequencies all increase with the rise of the core height. Furthermore, the results indicate that the hardening behaviors of the beam become weaker with the increase of the rise of strut radius and core height. The mechanisms of variations in hardening behavior of the sandwich beam with the three types of resonances are detailed and discussed.


Author(s):  
Robert G. Parker

The parametric instability of planetary gears having elastic continuum ring gears is analytically investigated based on a hybrid continuous-discrete model. Mesh stiffness variations of the sun-planet and ring-planet meshes caused by the changing number of teeth in contact are the source of parametric instability. The natural frequencies of the time invariant system are either distinct or degenerate with multiplicity two, which indicates three types of combination instabilities: distinct-distinct, distinct-degenerate and degenerate-degenerate instabilities. By using the structured modal properties of planetary gears and the method of multiple scales, the instability boundaries are obtained as simple expressions in terms of mesh parameters. Instability existence rules for in-phase planet meshes are given. The instability boundaries are validated numerically.


Sign in / Sign up

Export Citation Format

Share Document