scholarly journals Experimental and numerical study of ship-to-ship interactions in overtaking manoeuvres

Author(s):  
Dongchi Yu ◽  
Lu Wang ◽  
Ronald W. Yeung

The study on close-quarter manoeuvring of vessels is of great importance for the safety and efficiency of maritime operations. In this paper, the hydrodynamic interactions between two vessels in moderate-speed overtaking manoeuvres are studied. Computational investigation by free-surface panel method is performed, and the results are assessed against experimental measurements from towing-tank model tests. The influences of overtaking speed and the speed difference between vessels on the hydrodynamic loads are studied. It is found that the free-surface deformation, on account of the blockage effects of the bodies, wave-making properties of the vessels, and the interference of unsteady wave patterns between the vessels, considerably affects the hydrodynamic interactions. In addition, it is also discovered that the influence from the unsteady heave and pitch motions of the hulls on the hydrodynamic loads can be non-negligible. Furthermore, it is found that the slower vessel to be overtaken generally experiences larger loads with more variation than the overtaking vessel. The loads on both vessels become more similar to those of a steady-state di-hull system when the speed difference between vessels is small.

1997 ◽  
Author(s):  
H. Stahl ◽  
Kevin Stultz ◽  
H. Stahl ◽  
Kevin Stultz

Author(s):  
Timothée Jamin ◽  
Leonardo Gordillo ◽  
Gerardo Ruiz-Chavarría ◽  
Michael Berhanu ◽  
Eric Falcon

We report laboratory experiments on surface waves generated in a uniform fluid layer whose bottom undergoes an upward motion. Simultaneous measurements of the free-surface deformation and the fluid velocity field are focused on the role of the bottom kinematics (i.e. its spatio-temporal features) in wave generation. We observe that the fluid layer transfers bottom motion to the free surface as a temporal high-pass filter coupled with a spatial low-pass filter. Both filter effects are often neglected in tsunami warning systems, particularly in real-time forecast. Our results display good agreement with a prevailing linear theory without any parameter fitting. Based on our experimental findings, we provide a simple theoretical approach for modelling the rapid kinematics limit that is applicable even for initially non-flat bottoms: this may be a key step for more realistic varying bathymetry in tsunami scenarios.


1998 ◽  
Vol 376 ◽  
pp. 149-182 ◽  
Author(s):  
MICHAEL B. MACKAPLOW ◽  
ERIC S. G. SHAQFEH

The sedimentation of fibre suspensions at low Reynolds number is studied using two different, but complementary, numerical simulation methods: (1) Monte Carlo simulations, which consider interparticle hydrodynamic interactions at all orders within the slender-body theory approximation (Mackaplow & Shaqfeh 1996), and (ii) dynamic simulations, which consider point–particle interactions and are accurate for suspension concentrations of nl3=1, where n and l are the number density and characteristic half-length of the fibres, respectively. For homogeneous, isotropic suspensions, the Monte Carlo simulations show that the hindrance of the mean sedimentation speed is linear in particle concentration up to at least nl3=7. The speed is well predicted by a new dilute theory that includes the effect of two-body interactions. Our dynamic simulations of dilute suspensions, however, show that interfibre hydrodynamic interactions cause the spatial and orientational distributions to become inhomogeneous and anisotropic. Most of the fibres migrate into narrow streamers aligned in the direction of gravity. This drives a downward convective flow within the streamers which serves to increase the mean fibre sedimentation speed. A steady-state orientation distribution develops which strongly favours fibre alignment with gravity. Although the distribution reaches a steady state, individual fibres continue to rotate in a manner that can be qualitatively described as a flipping between the two orientations aligned with gravity. The simulation results are in good agreement with published experimental data.


2002 ◽  
Vol 46 (03) ◽  
pp. 186-200 ◽  
Author(s):  
Pierre C. Sames ◽  
Delphine Marcouly ◽  
Thomas E. Schellin

To validate an existing finite volume computational method, featuring a novel scheme to capture the temporal evolution of the free surface, fluid motions in partially filled tanks were simulated. The purpose was to compare computational and experimental results for test cases where measurements were available. Investigations comprised sloshing in a rectangular tank with a baffle at 60% filling level and in a cylindrical tank at 50% filling level. The numerical study started with examining effects of systematic grid refinement and concluded with examining effects of three-dimensionality and effects of variation of excitation period and amplitude. Predicted time traces of pressures and forces compared favorably with measurements.


Lubricants ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 31 ◽  
Author(s):  
Hazim U. Jamali ◽  
Amjad Al-Hamood ◽  
Oday I. Abdullah ◽  
Adolfo Senatore ◽  
Josef Schlattmann

The principal factors that affect the characteristics of contact problem between cam and follower vary enormously during the operating cycle of this mechanism. This includes radius of curvature, surface velocities and applied load. It has been found over the last decades that the mechanism operates under an extremely thin film of lubricant. Any practical improvement in the level of film thickness that separates the contacted surfaces represents an essential step towards a satisfactory design of the system. In this paper a detailed numerical study is presented for the cam and follower (flat-faced) lubrication including the effect of introducing an axial modification (parabolic shape) of the cam depth on the levels of film thickness and pressure distribution. This is achieved based on a point contact model for a cam and flat-faced follower system. The results reveal that the cam form of modification has considerable consequences on the level of predicted film thickness and pressure distribution as well as surface deformation.


Author(s):  
Shaowu Ou ◽  
Shixiao Fu ◽  
Wei Wei ◽  
Tao Peng ◽  
Xuefeng Wang

Typically, in some side-by-side offshore operations, the speed of vessels is very low or even 0 and the headings are manually maneuvered. In this paper, the hydrodynamic responses of a two-body system in such operations under irregular seas are investigated. The numerical model includes two identical PSVs (Platform Supply Vessel) as well as the fenders and connection lines between them. A horizontal mooring system constraining the low frequency motions is set on one of the ships to simulate maneuver system. Accounting for the hydrodynamic interactions between two bodies, 3D potential theory is applied for the analysis of their hydrodynamic coefficients. With wind and current effects included, these coefficients are further applied in the time domain simulations in irregular waves. The relevant coefficients are estimated by experiential formulas. Time-varying loads on fenders and connection lines are analyzed. Meanwhile, the relative motions as well as the effects of the hydrodynamic interactions between ships are further discussed, and finally an optimal operation scheme in which operation can be safely performed is summarized.


Sign in / Sign up

Export Citation Format

Share Document