Phenobarbitone modulation of postsynaptic GABA receptor function on cultured mammalian neurons

1979 ◽  
Vol 206 (1164) ◽  
pp. 319-327 ◽  

The anticonvulsant barbiturate phenobarbitone increases membrane current and conductance responses to γ-aminobutyric acid (GABA) in cultured mouse spinal neurons. Analyses of GABA current fluctuations under control conditions and in the presence of phenobarbitone show that the principle action is to increase the average time during which GABA- activated channels remain open. The duration of miniature synaptic currents with a time constant of decay similar to the mean open-time of GABA-activated channels is prolonged by the drug. The results suggest that (1) the synaptic events are GABA-mediated and (2) the enhancement of these events by barbiturate is due to the postsynaptic action of the drug.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Qi Zhang ◽  
Ying-Ying Tan ◽  
Xiao-hua Liu ◽  
Fan-Rong Yao ◽  
Dong-Yuan Cao

Electroacupuncture (EA) has been reported to benefit hypertension, but the underlying mechanisms are still unclear. We hypothesized that EA attenuates hypertension, in part, through modulation of γ-aminobutyric acid (GABA) receptor function in the nucleus tractus solitarii (NTS). In the present study, the long-term effect of EA on GABA receptor function and expression was examined in the NTS of two-kidney, one-clip (2K1C) renovascular hypertensive rats. EA (0.1–0.4 mA, 2 and 15 Hz) was applied at Zusanli (ST36) acupoints overlying the deep fibular nerve for 30 min once a day for two weeks. The results showed that long-term EA treatment improved blood pressure (BP) and markedly restored the baroreflex response in 2K1C hypertensive rats. The increased pressor and depressor responses to microinjection of GABAB receptor agonist and antagonist into the NTS in the hypertensive rats were blunted by the EA treatment. Moreover, EA treatment attenuated the increased GABAB receptor expression in the NTS of hypertensive rats. In contrast, EA had no significant effect on the GABAA receptor function and expression in the NTS of 2K1C hypertensive rats. These findings suggest that the beneficial effects of EA on renovascular hypertension may be through modulation of functional GABAB receptors in the NTS.


2018 ◽  
Vol 10 ◽  
pp. 117954331880478 ◽  
Author(s):  
Andrew K Jones

Recently, Taylor-Wells et al published evidence that the γ-aminobutyric acid (GABA) receptor, resistance to dieldrin (RDL), from mosquitoes undergoes RNA A-to-I editing to generate an extraordinarily large range of isoforms. This editing was found to affect GABA receptor pharmacology, as it influenced the potency of GABA and ivermectin. This highlights RNA editing as a species-specific mechanism to fine-tune receptor function as well as possibly increase tolerance of mosquitoes to certain insecticides. This commentary also considers novel findings from analysis of Rdl transcripts from individual mosquitoes taken from different geographical areas.


1991 ◽  
Vol 66 (3) ◽  
pp. 1010-1020 ◽  
Author(s):  
S. H. Williams ◽  
D. Johnston

1. We have investigated the kinetic properties of pharmacologically isolated excitatory synaptic currents in hippocampal CA3 neurons. Two distinct anatomic pathways, the commissural/associational (C/A) and the mossy fiber inputs, were compared to test the hypothesis derived from cable theory that distal inputs have slower kinetics than proximal inputs when measured at the soma. 2. Intracellular recordings were made from adult rat hippocampal slices using a single-electrode voltage clamp and low-resistance microelectrodes. A mixture of 10 microM picrotoxin and 10 microM bicuculine was used to block completely fast GABAergic inhibition. The slow inhibitory input was blocked by intracellular cesium. 3. The mean reversal potential of mossy fiber synaptic currents, -2.8 mV, was not significantly different from that of the C/A synaptic current, -1.4 mV. The mean 10-90% rise time of the mossy-fiber synaptic current [1.7 +/- 0.08 (SE) ms], however, was significantly faster than the C/A synaptic current (3.2 +/- 0.16 ms). Both mossy fiber and C/A synaptic-current decays were fit with a single exponential. The decay time constant of mossy fiber synaptic currents was also faster than that of the C/A excitatory postsynaptic current, 6.5 +/- 0.4 versus 10.1 +/- 0.8 ms. The mossy fiber synaptic current decay time constant showed little voltage dependence. 4. A modified shape index plot of synaptic current rise time versus decay time constant, normalized to membrane time constant, yielded a good linear relation for C/A synapses. A poorer correlation was observed for mossy fiber synapses. 5. Both synaptic currents could be fit by alpha functions. A representative value of alpha for the mossy fiber synapse was 295/s, and for the C/A was 172/s. 6. The rise time of the mossy fiber synaptic potential was significantly faster (5.3 ms) than the C/A (7.5 ms). The decay of both mossy fiber and C/A synaptic potentials was slower than the membrane time constant, suggesting that active currents may contribute to their falling phases. This prolongation was voltage dependent but insensitive to 2-amino-5-phosphonovaleric acid. 7. Our data provide a quantitative comparison of a proximal and a more distal synaptic input to CA3 hippocampal neurons. Distal inputs show slower kinetics than proximal synapses, as predicted. However, the voltage dependence of synaptic potential decays suggests that synaptic integration may be affected by active dendritic conductances.


1994 ◽  
Vol 64 ◽  
pp. 84
Author(s):  
Tatsuya Ichida ◽  
Masaaki Hirouchi ◽  
Kinya Kuriyama ◽  
Susumu Sasaki ◽  
Masao Nakagawa

1993 ◽  
Vol 70 (4) ◽  
pp. 1617-1628 ◽  
Author(s):  
X. Wang ◽  
S. N. Treistman ◽  
J. R. Lemos

1. Ca2+ currents through single channels in acutely dissociated nerve terminals from rat neurohypophyses were recorded using cell-attached patch recordings with 110 mM Ba2+ as the charge carrier. 2. One type (Nt, where the t denotes terminal) of single Ca2+ channel current was evoked only by depolarizing steps from holding potentials less negative than -50 mV. Because this channel opened primarily at the beginning of a 180-ms-long voltage pulse, the averaged ensemble current decayed rapidly (approximately 30 ms). Infrequently, the channel opened throughout such a long pulse, resulting in a long-lasting averaged ensemble current. The averaged channel open time constant (tau) was 0.34 ms and the two averaged closed time constants were 1.78 (tau 1) and 86.57 (tau 2) ms. The mean unitary slope conductance for this channel was 11 pS and its threshold for activation was approximately -10 mV. 3. The other type (L) of single Ca2+ channel current could be evoked in isolation by depolarizations from holding potentials more positive than or equal to -50 mV. This channel opened throughout an entire 180-ms-long voltage pulse. The averaged ensemble current, therefore, showed little inactivation. The averaged channel open-time constant was 0.49 ms and the two average closed time constants were 2.02 (tau 1) and 79.91 (tau 2) ms. The mean unitary slope conductance for this channel was 25 pS. 4. Bay K 8644 (5 microM), a dihydropyridine (DHP) Ca2+ channel agonist, increased the open probability of the larger-conductance L-type Ca2+ channel by prolonging the average duration (to 2.79 ms) of channel openings, but did not alter the single channel slope conductance. In contrast, the same concentration of Bay K 8644 did not affect the smaller-conductance Nt-type Ca2+ channel. The DHP Ca2+ channel antagonist nicardipine (5 microM), but not nifedipine (5 microM), reduced the open probability of the large-conductance L-type Ca2+ channel by shortening the duration (to 0.36 ms) of channel openings. 5. The voltage- and time-dependent properties of these two types of single Ca2+ channel currents are in close agreement with those of the two components of macroscopic Ca2+ currents previously reported using the "whole-terminal" recording method. Therefore these two types of single channels appear to underlie the macroscopic current. 6. Our studies suggest that the terminal Nt-type Ca2+ channel differs from the conventional somatic N- and T-type Ca2+ channels in some respects, and that the terminal L-type Ca2+ channel is similar to the conventional somatic L-type Ca2+ channel.(ABSTRACT TRUNCATED AT 400 WORDS)


1996 ◽  
Vol 107 (1) ◽  
pp. 35-45 ◽  
Author(s):  
L G Palmer ◽  
G Frindt

The gating kinetics of apical membrane Na channels in the rat cortical collecting tubule were assessed in cell-attached and inside-out excised patches from split-open tubules using the patch-clamp technique. In patches containing a single channel the open probability (Po) was variable, ranging from 0.05 to 0.9. The average Po was 0.5. However, the individual values were not distributed normally, but were mainly < or = 0.25 or > or = 0.75. Mean open times and mean closed times were correlated directly and inversely, respectively, with Po. In patches where a sufficient number of events could be recorded, two time constants were required to describe the open-time and closed-time distributions. In most patches in which basal Po was < 0.3 the channels could be activated by hyperpolarization of the apical membrane. In five such patches containing a single channel hyperpolarization by 40 mV increased Po by 10-fold, from 0.055 +/- 0.023 to 0.58 +/- 0.07. This change reflected an increase in the mean open time of the channels from 52 +/- 17 to 494 +/- 175 ms and a decrease in the mean closed time from 1,940 +/- 350 to 336 +/- 100 ms. These responses, however, could not be described by a simple voltage dependence of the opening and closing rates. In many cases significant delays in both the activation by hyperpolarization and deactivation by depolarization were observed. These delays ranged from several seconds to several tens of seconds. Similar effects of voltage were seen in cell-attached and excised patches, arguing against a voltage-dependent chemical modification of the channel, such as a phosphorylation. Rather, the channels appeared to switch between gating modes. These switches could be spontaneous but were strongly influenced by changes in membrane voltage. Voltage dependence of channel gating was also observed under whole-cell clamp conditions. To see if mechanical perturbations could also influence channel kinetics or gating mode, negative pressures of 10-60 mm Hg were applied to the patch pipette. In most cases (15 out of 22), this maneuver had no significant effect on channel behavior. In 6 out of 22 patches, however, there was a rapid and reversible increase in Po when the pressure was applied. In one patch, there was a reversible decrease. While no consistent effects of pressure could be documented, membrane deformation could contribute to the variation in Po under some conditions.


Parasitology ◽  
1990 ◽  
Vol 101 (2) ◽  
pp. 265-271 ◽  
Author(s):  
L. Dye-Holden ◽  
R. J. Walker

The mechanism underlying the ability of the anthelmintic avermectin to paralyse the nematode Ascaris is not yet fully understood. Using conventional two-electrode electrophysiological recording techniques we have demonstrated that micromolar concentrations of ivermectin block the inhibitory GABA response on the muscle cells of the parasitic nematode Ascaris. The ability of a number of avermectin derivatives to act as receptor antagonists for the Ascaris muscle GABA receptor has been determined. This provides useful information to compare with the in vivo anthelmintic potency of these compounds. Abamectin, the most potent anthelmintic, was the most potent compound at inhibiting the GABA response whilst octahydroavermectin, a compound which lacks anthelmintic activity, did not block the GABA receptor. This is consistent with the notion that the GABA receptor antagonist properties of the avermectins could contribute to their anthelmintic action.


2018 ◽  
Vol 129 (3) ◽  
pp. 477-489 ◽  
Author(s):  
Dian-Shi Wang ◽  
Kirusanthy Kaneshwaran ◽  
Gang Lei ◽  
Fariya Mostafa ◽  
Junhui Wang ◽  
...  

Abstract What We Already Know about This Topic What This Article Tells Us That Is New Background Postoperative delirium is associated with poor long-term outcomes and increased mortality. General anesthetic drugs may contribute to delirium because they increase cell-surface expression and function of α5 subunit-containing γ-aminobutyric acid type A receptors, an effect that persists long after the drugs have been eliminated. Dexmedetomidine, an α2 adrenergic receptor agonist, prevents delirium in patients and reduces cognitive deficits in animals. Thus, it was postulated that dexmedetomidine prevents excessive function of α5 γ-aminobutyric acid type A receptors. Methods Injectable (etomidate) and inhaled (sevoflurane) anesthetic drugs were studied using cultured murine hippocampal neurons, cultured murine and human cortical astrocytes, and ex vivo murine hippocampal slices. γ-Aminobutyric acid type A receptor function and cell-signaling pathways were studied using electrophysiologic and biochemical methods. Memory and problem-solving behaviors were also studied. Results The etomidate-induced sustained increase in α5 γ-aminobutyric acid type A receptor cell-surface expression was reduced by dexmedetomidine (mean ± SD, etomidate: 146.4 ± 51.6% vs. etomidate + dexmedetomidine: 118.4 ± 39.1% of control, n = 8 each). Dexmedetomidine also reduced the persistent increase in tonic inhibitory current in hippocampal neurons (etomidate: 1.44 ± 0.33 pA/pF, n = 10; etomidate + dexmedetomidine: 1.01 ± 0.45 pA/pF, n = 9). Similarly, dexmedetomidine prevented a sevoflurane-induced increase in the tonic current. Dexmedetomidine stimulated astrocytes to release brain-derived neurotrophic factor, which acted as a paracrine factor to reduce excessive α5 γ-aminobutyric acid type A receptor function in neurons. Finally, dexmedetomidine attenuated memory and problem-solving deficits after anesthesia. Conclusions Dexmedetomidine prevented excessive α5 γ-aminobutyric acid type A receptor function after anesthesia. This novel α2 adrenergic receptor- and brain-derived neurotrophic factor-dependent pathway may be targeted to prevent delirium.


Sign in / Sign up

Export Citation Format

Share Document