scholarly journals Stroke frequency, but not swimming speed, is related to body size in free-ranging seabirds, pinnipeds and cetaceans

2006 ◽  
Vol 274 (1609) ◽  
pp. 471-477 ◽  
Author(s):  
Katsufumi Sato ◽  
Yutaka Watanuki ◽  
Akinori Takahashi ◽  
Patrick J.O Miller ◽  
Hideji Tanaka ◽  
...  

It is obvious, at least qualitatively, that small animals move their locomotory apparatus faster than large animals: small insects move their wings invisibly fast, while large birds flap their wings slowly. However, quantitative observations have been difficult to obtain from free-ranging swimming animals. We surveyed the swimming behaviour of animals ranging from 0.5 kg seabirds to 30 000 kg sperm whales using animal-borne accelerometers. Dominant stroke cycle frequencies of swimming specialist seabirds and marine mammals were proportional to mass −0.29 ( R 2 =0.99, n =17 groups), while propulsive swimming speeds of 1–2 m s −1 were independent of body size. This scaling relationship, obtained from breath-hold divers expected to swim optimally to conserve oxygen, does not agree with recent theoretical predictions for optimal swimming. Seabirds that use their wings for both swimming and flying stroked at a lower frequency than other swimming specialists of the same size, suggesting a morphological trade-off with wing size and stroke frequency representing a compromise. In contrast, foot-propelled diving birds such as shags had similar stroke frequencies as other swimming specialists. These results suggest that muscle characteristics may constrain swimming during cruising travel, with convergence among diving specialists in the proportions and contraction rates of propulsive muscles.

2020 ◽  
Vol 7 (5) ◽  
pp. 192046 ◽  
Author(s):  
Amy Apprill ◽  
Carolyn A. Miller ◽  
Amy M. Van Cise ◽  
Jana M. U'Ren ◽  
Matthew S. Leslie ◽  
...  

Skin-associated microorganisms have been shown to play a role in immune function and disease of humans, but are understudied in marine mammals, a diverse animal group that serve as sentinels of ocean health. We examined the microbiota associated with 75 epidermal samples opportunistically collected from nine species within four marine mammal families, including: Balaenopteridae (sei and fin whales), Phocidae (harbour seal), Physeteridae (sperm whales) and Delphinidae (bottlenose dolphins, pantropical spotted dolphins, rough-toothed dolphins, short-finned pilot whales and melon-headed whales). The skin was sampled from free-ranging animals in Hawai‘i (Pacific Ocean) and off the east coast of the United States (Atlantic Ocean), and the composition of the bacterial community was examined using the sequencing of partial small subunit (SSU) ribosomal RNA genes. Skin microbiotas were significantly different among host species and taxonomic families, and microbial community distance was positively correlated with mitochondrial-based host genetic divergence. The oceanic location could play a role in skin microbiota variation, but skin from species sampled in both locations is necessary to determine this influence. These data suggest that a phylosymbiotic relationship may exist between microbiota and their marine mammal hosts, potentially providing specific health and immune-related functions that contribute to the success of these animals in diverse ocean ecosystems.


2019 ◽  
Vol 46 (1) ◽  
pp. 63-74
Author(s):  
Stefano Mattioli

The rediscovery of the original, unedited Latin manuscript of Georg Wilhelm Steller's “De bestiis marinis” (“On marine mammals”), first published in 1751, calls for a new translation into English. The main part of the treatise contains detailed descriptions of four marine mammals, but the introduction is devoted to more general issues, including innovative speculation on morphology, ecology and biogeography, anticipating arguments and concepts of modern biology. Steller noted early that climate and food have a direct influence on body size, pelage and functional traits of mammals, potentially affecting reversible changes (phenotypic plasticity). Feeding and other behavioural habits have an impact on the geographical distribution of mammals. Species with a broad diet tend to have a wide distribution, whereas animals with a narrow diet more likely have only a restricted range. According to Steller, both sea and land then still concealed countless animals unknown to science.


2015 ◽  
Vol 8 ◽  
Author(s):  
A. Mel Cosentino

Orcinus orcais a cosmopolitan species and the most widely distributed marine mammal. Its diet includes over 140 species of fish, cephalopods, sea birds and marine mammals. However, many populations are specialised on certain specific prey items. Three genetically distinct populations have been described in the North Atlantic. Population A (that includes the Icelandic and Norwegian sub-populations) is believed to be piscivorous, as is population C, which includes fish-eating killer whales from the Strait of Gibraltar. In contrast, population B feeds on both fish and marine mammals. Norwegian killer whales follow the Norwegian spring spawning herring stock. The only description in the literature of Norwegian killer whales feeding on another cetacean species is a predation event on northern bottlenose whales in 1968. Daily land-based surveys targeting sperm whales were conducted from the Andenes lighthouse using BigEyes®binoculars (25×, 80 mm). The location of animals at sea was approximated through the use of an internal reticule system and a graduated wheel. On 24 June 2012 at 3:12 am, an opportunistic sighting of 11 killer whales was made off Andenes harbour. The whales hunted and fed on a harbour porpoise. Despite these species having overlapping distributions in Norwegian waters, this is the first predatory event reported in the literature.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Massimiliano Drago ◽  
Marco Signaroli ◽  
Meica Valdivia ◽  
Enrique M. González ◽  
Asunción Borrell ◽  
...  

AbstractUnderstanding the trophic niches of marine apex predators is necessary to understand interactions between species and to achieve sustainable, ecosystem-based fisheries management. Here, we review the stable carbon and nitrogen isotope ratios for biting marine mammals inhabiting the Atlantic Ocean to test the hypothesis that the relative position of each species within the isospace is rather invariant and that common and predictable patterns of resource partitioning exists because of constrains imposed by body size and skull morphology. Furthermore, we analyze in detail two species-rich communities to test the hypotheses that marine mammals are gape limited and that trophic position increases with gape size. The isotopic niches of species were highly consistent across regions and the topology of the community within the isospace was well conserved across the Atlantic Ocean. Furthermore, pinnipeds exhibited a much lower diversity of isotopic niches than odontocetes. Results also revealed body size as a poor predictor of the isotopic niche, a modest role of skull morphology in determining it, no evidence of gape limitation and little overlap in the isotopic niche of sympatric species. The overall evidence suggests limited trophic flexibility for most species and low ecological redundancy, which should be considered for ecosystem-based fisheries management.


2021 ◽  
Vol 9 (4) ◽  
pp. 444
Author(s):  
Charlotte Curé ◽  
Saana Isojunno ◽  
Marije L. Siemensma ◽  
Paul J. Wensveen ◽  
Célia Buisson ◽  
...  

Controlled exposure experiments (CEEs) have demonstrated that naval pulsed active sonar (PAS) can induce costly behavioral responses in cetaceans similar to antipredator responses. New generation continuous active sonars (CAS) emit lower amplitude levels but more continuous signals. We conducted CEEs with PAS, CAS and no-sonar control on free-ranging sperm whales in Norway. Two panels blind to experimental conditions concurrently inspected acoustic-and-movement-tag data and visual observations of tagged whales and used an established severity scale (0–9) to assign scores to putative responses. Only half of the exposures elicited a response, indicating overall low responsiveness in sperm whales. Responding whales (10 of 12) showed more, and more severe responses to sonar compared to no-sonar. Moreover, the probability of response increased when whales were previously exposed to presence of predatory and/or competing killer or long-finned pilot whales. Various behavioral change types occurred over a broad range of severities (1–6) during CAS and PAS. When combining all behavioral types, the proportion of responses to CAS was significantly higher than no-sonar but not different from PAS. Responses potentially impacting vital rates i.e., with severity ≥4, were initiated at received cumulative sound exposure levels (dB re 1 μPa2 s) of 137–177 during CAS and 143–181 during PAS.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Joëlle De Weerdt ◽  
Eric Angel Ramos ◽  
Etienne Pouplard ◽  
Marc Kochzius ◽  
Phillip Clapham

AbstractDocumenting marine mammal strandings provides important information needed to understand the occurrence and distribution patterns of species. Here, we report on strandings of cetaceans on the Pacific (n = 11) and Caribbean (n = 2) coasts of Nicaragua, documented opportunistically from 2014 to 2021. Strandings included three species of baleen whale (blue whale Balaenoptera musculus, Bryde’s whale Balaenoptera edeni, humpback whale Megaptera novaeangliae) and five species of toothed whale (dwarf sperm whale Kogia sima, Guiana dolphin Sotalia guianensis, pantropical spotted dolphin Stenella attenuata, spinner dolphin Stenella longirostris, Cuvier’s beaked whale Ziphius cavirostris). These are the first published accounts of blue whales, Bryde’s whales, dwarf sperm whales, and Cuvier’s beaked whales in Nicaraguan waters. Limited resources and the advanced decomposition of animals prevented necropsies in most cases, the identification of the causes of mortality in all cases, and the species identification of two dolphins. Information derived from these stranding events offers new insights into the occurrence of marine mammals on the Pacific and Caribbean coasts of Nicaragua and Central America.


2015 ◽  
Vol 113 (4) ◽  
pp. 868-873 ◽  
Author(s):  
Christopher E. Doughty ◽  
Joe Roman ◽  
Søren Faurby ◽  
Adam Wolf ◽  
Alifa Haque ◽  
...  

The past was a world of giants, with abundant whales in the sea and large animals roaming the land. However, that world came to an end following massive late-Quaternary megafauna extinctions on land and widespread population reductions in great whale populations over the past few centuries. These losses are likely to have had important consequences for broad-scale nutrient cycling, because recent literature suggests that large animals disproportionately drive nutrient movement. We estimate that the capacity of animals to move nutrients away from concentration patches has decreased to about 8% of the preextinction value on land and about 5% of historic values in oceans. For phosphorus (P), a key nutrient, upward movement in the ocean by marine mammals is about 23% of its former capacity (previously about 340 million kg of P per year). Movements by seabirds and anadromous fish provide important transfer of nutrients from the sea to land, totalling ∼150 million kg of P per year globally in the past, a transfer that has declined to less than 4% of this value as a result of the decimation of seabird colonies and anadromous fish populations. We propose that in the past, marine mammals, seabirds, anadromous fish, and terrestrial animals likely formed an interlinked system recycling nutrients from the ocean depths to the continental interiors, with marine mammals moving nutrients from the deep sea to surface waters, seabirds and anadromous fish moving nutrients from the ocean to land, and large animals moving nutrients away from hotspots into the continental interior.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Adam Hartstone-Rose ◽  
Jonathan M. G. Perry

In a recent study, we quantified the scaling of ingested food size (Vb )—the maximum size at which an animal consistently ingests food whole—and found that Vb scaled isometrically between species of captive strepsirrhines. The current study examines the relationship between Vb and body size within species with a focus on the frugivorous Varecia rubra and the folivorous Propithecus coquereli. We found no overlap in Vb between the species (all V. rubra ingested larger pieces of food relative to those eaten by P. coquereli), and least-squares regression of Vb and three different measures of body mass showed no scaling relationship within each species. We believe that this lack of relationship results from the relatively narrow intraspecific body size variation and seemingly patternless individual variation in Vb within species and take this study as further evidence that general scaling questions are best examined interspecifically rather than intraspecifically.


2002 ◽  
Vol 80 (9) ◽  
pp. 1511-1519 ◽  
Author(s):  
Lizzy Mos ◽  
Peter S Ross

Vitamin A is a nutrient essential to all mammals for growth and development, as well as for the maintenance of reproductive, endocrine, and immune systems. Environmental contaminant-related disruption of vitamin A has been observed in many wildlife species and can therefore be used as a biomarker of toxic effects. However, the natural processes regulating vitamin A uptake, storage, and distribution among compartments are poorly understood in marine mammals. In this study, 20 young healthy harbour seals (Phoca vitulina) were captured to establish a compartment-based model providing a foundation for a mechanistic understanding of vitamin A physiology and disruption. Vitamin A (retinol, retinyl palmitate, and (or) retinoic acid) was quantified in blood plasma and in biopsy samples of liver, blubber, and skin. Although the highest concentrations of vitamin A were found in liver, blubber represents a more important storage depot, with an estimated 66% of the total retinoid content of the compartments measured. We suggest that vitamin A physiology in the precocious harbour seal has evolved to deal with high vitamin A availability during a short nursing period and to sustain growth during the postweaning fast. Positive correlations in vitamin A concentrations among liver, blubber, and skin support the use of less invasive biopsy sampling of just blubber or skin, which can provide physiologically relevant information in biomarker studies of free-ranging marine mammals.


Sign in / Sign up

Export Citation Format

Share Document