scholarly journals Phage loss and the breakdown of a defensive symbiosis in aphids

2013 ◽  
Vol 280 (1751) ◽  
pp. 20122103 ◽  
Author(s):  
S. R. Weldon ◽  
M. R. Strand ◽  
K. M. Oliver

Terrestrial arthropods are often infected with heritable bacterial symbionts, which may themselves be infected by bacteriophages. However, what role, if any, bacteriophages play in the regulation and maintenance of insect–bacteria symbioses is largely unknown. Infection of the aphid Acyrthosiphon pisum by the bacterial symbiont Hamiltonella defensa confers protection against parasitoid wasps, but only when H. defensa is itself infected by the phage A. pisum secondary endosymbiont (APSE). Here, we use a controlled genetic background and correlation-based assays to show that loss of APSE is associated with up to sevenfold increases in the intra-aphid abundance of H. defensa . APSE loss is also associated with severe deleterious effects on aphid fitness: aphids infected with H. defensa lacking APSE have a significantly delayed onset of reproduction, lower weight at adulthood and half as many total offspring as aphids infected with phage-harbouring H. defensa , indicating that phage loss can rapidly lead to the breakdown of the defensive symbiosis. Our results overall indicate that bacteriophages play critical roles in both aphid defence and the maintenance of heritable symbiosis.

2015 ◽  
Vol 282 (1811) ◽  
pp. 20150977 ◽  
Author(s):  
Ailsa H. C. McLean ◽  
H. Charles J. Godfray

Many insects harbour facultative symbiotic bacteria, some of which have been shown to provide resistance against natural enemies. One of the best-known protective symbionts is Hamiltonella defensa , which in pea aphid ( Acyrthosiphon pisum ) confers resistance against attack by parasitoid wasps in the genus Aphidius (Braconidae). We asked (i) whether this symbiont also confers protection against a phylogenetically distant group of parasitoids (Aphelinidae) and (ii) whether there are consistent differences in the effects of bacteria found in pea aphid biotypes adapted to different host plants. We found that some H. defensa strains do provide protection against an aphelinid parasitoid Aphelinus abdominalis. Hamiltonella defensa from the Lotus biotype provided high resistance to A. abdominalis and moderate to low resistance to Aphidius ervi , while the reverse was seen from Medicago biotype isolates. Aphids from Ononis showed no evidence of symbiont-mediated protection against either wasp species and were relatively vulnerable to both. Our results may reflect the different selection pressures exerted by the parasitoid community on aphids feeding on different host plants, and could help explain the maintenance of genetic diversity in bacterial symbionts.


2015 ◽  
Vol 282 (1799) ◽  
pp. 20142333 ◽  
Author(s):  
Luis Cayetano ◽  
Lukas Rothacher ◽  
Jean-Christophe Simon ◽  
Christoph Vorburger

Defences against parasites are typically associated with costs to the host that contribute to the maintenance of variation in resistance. This also applies to the defence provided by the facultative bacterial endosymbiont Hamiltonella defensa, which protects its aphid hosts against parasitoid wasps while imposing life-history costs. To investigate the cost–benefit relationship within protected hosts, we introduced multiple isolates of H. defensa to the same genetic backgrounds of black bean aphids, Aphis fabae , and we quantified the protection against their parasitoid Lysiphlebus fabarum as well as the costs to the host (reduced lifespan and reproduction) in the absence of parasitoids. Surprisingly, we observed the opposite of a trade-off. Strongly protective isolates of H. defensa reduced lifespan and lifetime reproduction of unparasitized aphids to a lesser extent than weakly protective isolates. This finding has important implications for the evolution of defensive symbiosis and highlights the need for a better understanding of how strain variation in protective symbionts is maintained.


Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 43
Author(s):  
Cesar Auguste Badji ◽  
Zoé Sol-Mochkovitch ◽  
Charlotte Fallais ◽  
Corentin Sochard ◽  
Jean-Christophe Simon ◽  
...  

Aphids use an alarm pheromone, E-β farnesene (EBF), to warn conspecifics of potential danger. The antennal sensitivity and behavioural escape responses to EBF can be influenced by different factors. In the pea aphid, Acyrthosiphon pisum, different biotypes are adapted to different legume species, and within each biotype, different genotypes exist, which can carry or not Hamiltonella defensa, a bacterial symbiont that can confer protection against natural enemies. We investigate here the influence of the aphid genotype and symbiotic status on the escape behaviour using a four-way olfactometer and antennal sensitivity for EBF using electroantennograms (EAGs). Whereas the investigated three genotypes from two biotypes showed significantly different escape and locomotor behaviours in the presence of certain EBF doses, the infection with H. defensa did not significantly modify the escape behaviour and only marginally influenced the locomotor behaviour at high doses of EBF. Dose-response curves of EAG amplitudes after stimulation with EBF differed significantly between aphid genotypes in correlation with behavioural differences, whereas antennal sensitivity to EBF did not change significantly as a function of the symbiotic status. The protective symbiont H. defensa does thus not modify the olfactory sensitivity to the alarm pheromone. How EBF sensitivity is modified between genotypes or biotypes remains to be investigated.


Author(s):  
V Patel ◽  
G Chevignon ◽  
A Manzano-Marín ◽  
J W Brandt ◽  
M R Strand ◽  
...  

Abstract Heritable symbionts are common in terrestrial arthropods and often provide beneficial services to hosts. Unlike obligate, nutritional symbionts that largely persist under strict host control within specialized host cells, heritable facultative symbionts exhibit large variation in within-host lifestyles and services rendered with many retaining the capacity to transition among roles. One enigmatic symbiont, Candidatus Fukatsuia symbiotica, frequently infects aphids with reported roles ranging from pathogen, defensive symbiont, mutualism exploiter and nutritional co-obligate symbiont. Here we used an in vitro culture-assisted protocol to sequence the genome of a facultative strain of Fukatsuia from pea aphids (Acyrthosiphon pisum). Phylogenetic and genomic comparisons indicate that Fukatsuia is an aerobic heterotroph, which together with Regiella insecticola and Hamiltonella defensa form a clade of heritable facultative symbionts within the Yersiniaceae (Enterobacteriales). These three heritable facultative symbionts largely share overlapping inventories of genes associated with housekeeping functions, metabolism, and nutrient acquisition, while varying in complements of mobile DNA. One unusual feature of Fukatsuia is its strong tendency to occur as a co-infection with H. defensa. However, the overall similarity of gene inventories among aphid heritable facultative symbionts suggest that metabolic complementarity is not the basis for co-infection, unless playing out on a H. defensa strain-specific basis. We also compared the pea aphid Fukatsuia with a strain from the aphid Cinara confinis (Lachninae) where it is reported to have transitioned to co-obligate status to support decaying Buchnera function. Overall the two genomes are very similar with no clear genomic signatures consistent with such a transition, which suggests co-obligate status in C. confinis was a recent event.


2021 ◽  
Vol 11 ◽  
Author(s):  
Heidi Kaech ◽  
Christoph Vorburger

Secondary endosymbionts of aphids have an important ecological and evolutionary impact on their host, as they provide resistance to natural enemies but also reduce the host’s lifespan and reproduction. While secondary symbionts of aphids are faithfully transmitted from mother to offspring, they also have some capacity to be transmitted horizontally between aphids. Here we explore whether 11 isolates from 3 haplotypes of the secondary endosymbiont Hamiltonella defensa differ in their capacity for horizontal transmission. These isolates vary in the protection they provide against parasitoid wasps as well as the costs they inflict on their host, Aphis fabae. We simulated natural horizontal transmission through parasitoid wasps by stabbing aphids with a thin needle and assessed horizontal transmission success of the isolates from one shared donor clone into three different recipient clones. Specifically, we asked whether potentially costly isolates reaching high cell densities in aphid hosts are more readily transmitted through this route. This hypothesis was only partially supported. While transmissibility increased with titre for isolates from two haplotypes, isolates of the H. defensa haplotype 1 were transmitted with greater frequency than isolates of other haplotypes with comparable titres. Thus, it is not sufficient to be merely frequent—endosymbionts might have to evolve specific adaptations to transmit effectively between hosts.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mélanie Leclair ◽  
Christelle Buchard ◽  
Frédérique Mahéo ◽  
Jean-Christophe Simon ◽  
Yannick Outreman

In the last decade, the influence of microbial symbionts on ecological and physiological traits of their hosts has been increasingly recognized. However, most of these effects have been revealed under laboratory conditions, which oversimplifies the complexity of the factors involved in the dynamics of symbiotic associations in nature. The pea aphid, Acyrthosiphon pisum, forms a complex of plant-adapted biotypes, which strongly differ in the prevalence of their facultative endosymbionts. Some of the facultative endosymbionts of A. pisum have been shown to confer protection against natural enemies, among which Hamiltonella defensa is known to protect its host from parasitoid wasps. Here, we tested under natural conditions whether the endosymbiont communities of different A. pisum biotypes had a protective effect on their hosts and whether endosymbiotic associations and parasitoid communities associated with the pea aphid complex were linked. A space-time monitoring of symbiotic associations, parasitoid pressure and parasitoid communities was carried out in three A. pisum biotypes respectively specialized on Medicago sativa (alfalfa), Pisum sativum (pea), and Trifolium sp. (clover) throughout the whole cropping season. While symbiotic associations, and to a lesser extent, parasitoid communities were stable over time and structured mainly by the A. pisum biotypes, the parasitoid pressure strongly varied during the season and differed among the three biotypes. This suggests a limited influence of parasitoid pressure on the dynamics of facultative endosymbionts at a seasonal scale. However, we found a positive correlation between the α and β diversities of the endosymbiont and parasitoid communities, indicating interactions between these two guilds. Also, we revealed a negative correlation between the prevalence of H. defensa and Fukatsuia symbiotica in co-infection and the intensity of parasitoid pressure in the alfalfa biotype, confirming in field conditions the protective effect of this symbiotic combination.


2017 ◽  
Vol 83 (8) ◽  
Author(s):  
Matthew R. Doremus ◽  
Kerry M. Oliver

ABSTRACT Insects and other animals commonly form symbioses with heritable bacteria, which can exert large influences on host biology and ecology. The pea aphid, Acyrthosiphon pisum, is a model for studying effects of infection with heritable facultative symbionts (HFS), and each of its seven common HFS species has been reported to provide resistance to biotic or abiotic stresses. However, one common HFS, called X-type, rarely occurs as a single infection in field populations and instead typically superinfects individual aphids with Hamiltonella defensa, another HFS that protects aphids against attack by parasitic wasps. Using experimental aphid lines comprised of all possible infection combinations in a uniform aphid genotype, we investigated whether the most common strain of X-type provides any of the established benefits associated with aphid HFS as a single infection or superinfection with H. defensa. We found that X-type does not confer protection to any tested threats, including parasitoid wasps, fungal pathogens, or thermal stress. Instead, component fitness assays identified large costs associated with X-type infection, costs which were ameliorated in superinfected aphids. Together these findings suggest that X-type exploits the aphid/H. defensa mutualism and is maintained primarily as a superinfection by “hitchhiking” via the mutualistic benefits provided by another HFS. Exploitative symbionts potentially restrict the functions and distributions of mutualistic symbioses with effects that extend to other community members. IMPORTANCE Maternally transmitted bacterial symbionts are widespread and can have major impacts on the biology of arthropods, including insects of medical and agricultural importance. Given that host fitness and symbiont fitness are tightly linked, inherited symbionts can spread within host populations by providing beneficial services. Many insects, however, are frequently infected with multiple heritable symbiont species, providing potential alternative routes of symbiont maintenance. Here we show that a common pea aphid symbiont called X-type likely employs an exploitative strategy of hitchhiking off the benefits of a protective symbiont, Hamiltonella. Infection with X-type provides none of the benefits conferred by other aphid symbionts and instead results in large fitness costs, costs lessened by superinfection with Hamiltonella. These findings are corroborated by natural infections in field populations, where X-type is mostly found superinfecting aphids with Hamiltonella. Exploitative symbionts may be common in hosts with communities of heritable symbionts and serve to hasten the breakdown of mutualisms.


2020 ◽  
Vol 9 (40) ◽  
Author(s):  
Naruo Nikoh ◽  
Tsutomu Tsuchida ◽  
Ryuichi Koga ◽  
Kenshiro Oshima ◽  
Masahira Hattori ◽  
...  

ABSTRACT The genome of “Candidatus Regiella insecticola” strain TUt, a facultative bacterial symbiont of the pea aphid Acyrthosiphon pisum, was analyzed. We determined a 2.5-Mb draft genome consisting of 14 contigs; this will contribute to the understanding of the symbiont, which underpins various ecologically adaptive traits of the host insect.


1991 ◽  
Vol 123 (6) ◽  
pp. 1229-1237 ◽  
Author(s):  
B. Bai

AbstractConspecific host discrimination and larval competition in two aphid parasitoid species were studied in the laboratory using the pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae), as a host. Aphidius ervi Haliday (Hymenoptera: Aphidiidae) used internal host cues to discriminate between unparasitized and conspecific parasitized hosts. When only parasitized hosts were available, females oviposited into recently parasitized ones where their progeny had a good chance to survive, but rejected those parasitized ≥24 h earlier where their offspring normally died. Competitions occurred only after both eggs had hatched. Larvae eliminated supernumeraries by means of physical combat and physiological suppression. In Aphelinus asychis Walker (Hymenoptera: Aphelinidae), factors, or changes in host internal condition, associated with hatching of the first egg resulted in suppression of conspecific competitors which could be in either larval or egg stage. The older larvae always won competitions through physiological means. A wasp’s oviposition decision is shown to be influenced by the probability of its progeny’s survival. Species that have different reproductive strategies may respond differently to identical host conditions.


2006 ◽  
Vol 31 (3) ◽  
pp. 262-269 ◽  
Author(s):  
A. E. DOUGLAS ◽  
C. L. M. J. FRANCOIS ◽  
L. B. MINTO

Sign in / Sign up

Export Citation Format

Share Document