scholarly journals Aphid Heritable Symbiont Exploits Defensive Mutualism

2017 ◽  
Vol 83 (8) ◽  
Author(s):  
Matthew R. Doremus ◽  
Kerry M. Oliver

ABSTRACT Insects and other animals commonly form symbioses with heritable bacteria, which can exert large influences on host biology and ecology. The pea aphid, Acyrthosiphon pisum, is a model for studying effects of infection with heritable facultative symbionts (HFS), and each of its seven common HFS species has been reported to provide resistance to biotic or abiotic stresses. However, one common HFS, called X-type, rarely occurs as a single infection in field populations and instead typically superinfects individual aphids with Hamiltonella defensa, another HFS that protects aphids against attack by parasitic wasps. Using experimental aphid lines comprised of all possible infection combinations in a uniform aphid genotype, we investigated whether the most common strain of X-type provides any of the established benefits associated with aphid HFS as a single infection or superinfection with H. defensa. We found that X-type does not confer protection to any tested threats, including parasitoid wasps, fungal pathogens, or thermal stress. Instead, component fitness assays identified large costs associated with X-type infection, costs which were ameliorated in superinfected aphids. Together these findings suggest that X-type exploits the aphid/H. defensa mutualism and is maintained primarily as a superinfection by “hitchhiking” via the mutualistic benefits provided by another HFS. Exploitative symbionts potentially restrict the functions and distributions of mutualistic symbioses with effects that extend to other community members. IMPORTANCE Maternally transmitted bacterial symbionts are widespread and can have major impacts on the biology of arthropods, including insects of medical and agricultural importance. Given that host fitness and symbiont fitness are tightly linked, inherited symbionts can spread within host populations by providing beneficial services. Many insects, however, are frequently infected with multiple heritable symbiont species, providing potential alternative routes of symbiont maintenance. Here we show that a common pea aphid symbiont called X-type likely employs an exploitative strategy of hitchhiking off the benefits of a protective symbiont, Hamiltonella. Infection with X-type provides none of the benefits conferred by other aphid symbionts and instead results in large fitness costs, costs lessened by superinfection with Hamiltonella. These findings are corroborated by natural infections in field populations, where X-type is mostly found superinfecting aphids with Hamiltonella. Exploitative symbionts may be common in hosts with communities of heritable symbionts and serve to hasten the breakdown of mutualisms.

2019 ◽  
Vol 86 (5) ◽  
Author(s):  
S. R. Weldon ◽  
J. A. Russell ◽  
K. M. Oliver

ABSTRACT Animal-associated microbes are highly variable, contributing to a diverse set of symbiont-mediated phenotypes. Given that host and symbiont genotypes, and their interactions, can impact symbiont-based phenotypes across environments, there is potential for extensive variation in fitness outcomes. Pea aphids, Acyrthosiphon pisum, host a diverse assemblage of heritable facultative symbionts (HFS) with characterized roles in host defense. Protective phenotypes have been largely studied as single infections, but pea aphids often carry multiple HFS species, and particular combinations may be enriched or depleted compared to expectations based on chance. Here, we examined the consequences of single infection versus coinfection with two common HFS exhibiting variable enrichment, the antiparasitoid Hamiltonella defensa and the antipathogen Regiella insecticola, across three host genotypes and environments. As expected, single infections with either H. defensa or R. insecticola raised defenses against their respective targets. Single infections with protective H. defensa lowered aphid fitness in the absence of enemy challenge, while R. insecticola was comparatively benign. However, as a coinfection, R. insecticola ameliorated H. defensa infection costs. Coinfected aphids continued to receive antiparasitoid protection from H. defensa, but protection was weakened by R. insecticola in two clones. Notably, H. defensa eliminated survival benefits conferred after pathogen exposure by coinfecting R. insecticola. Since pathogen sporulation was suppressed by R. insecticola in coinfected aphids, the poor performance likely stemmed from H. defensa-imposed costs rather than weakened defenses. Our results reveal a complex set of coinfection outcomes which may partially explain natural infection patterns and suggest that symbiont-based phenotypes may not be easily predicted based solely on infection status. IMPORTANCE The hyperdiverse arthropods often harbor maternally transmitted bacteria that protect against natural enemies. In many species, low-diversity communities of heritable symbionts are common, providing opportunities for cooperation and conflict among symbionts, which can impact the defensive services rendered. Using the pea aphid, a model for defensive symbiosis, we show that coinfections with two common defensive symbionts, the antipathogen Regiella and the antiparasite Hamiltonella, produce outcomes that are highly variable compared to single infections, which consistently protect against designated enemies. Compared to single infections, coinfections often reduced defensive services during enemy challenge yet improved aphid fitness in the absence of enemies. Thus, infection with multiple symbionts does not necessarily create generalist aphids with “Swiss army knife” defenses against numerous enemies. Instead, particular combinations of symbionts may be favored for a variety of reasons, including their abilities to lessen the costs of other defensive symbionts when enemies are not present.


2020 ◽  
Author(s):  
Benjamin J. Parker ◽  
Jan Hrček ◽  
Ailsa H.C. McLean ◽  
Jennifer A. Brisson ◽  
H. Charles J. Godfray

AbstractMany insects host vertically-transmitted microbes, which can confer benefits to their hosts but are costly to maintain and regulate. A key feature of these symbioses is variation: for example, symbiont density can vary among host and symbiont genotypes. However, the evolutionary forces maintaining this variation remain unclear. We studied variation in symbiont density using the pea aphid (Acyrthosiphon pisum) and the bacterium Regiella insecticola, a symbiont that can protect its host against fungal pathogens. We found that relative symbiont density varies both between two Regiella phylogenetic clades and among aphid ‘biotypes’. Higher-density symbiont infections are correlated with stronger survival costs, but variation in density has little effect on the protection Regiella provides against fungus. Instead, we found that in some aphid genotypes, a dramatic decline in symbiont density precedes the loss of a symbiont infection. Together, our data suggest that the optimal density of a symbiont infection is likely different from the perspective of aphid and microbial fitness. Regiella might prevent loss by maintaining high within-host densities, but hosts do not appear to benefit from higher symbiont numbers and may be advantaged by losing costly symbionts in certain environments. The standing variation in symbiont density observed in natural populations could therefore be maintained by antagonistic coevolutionary interactions between hosts and their symbiotic microbes.


2019 ◽  
Vol 8 (19) ◽  
Author(s):  
Naruo Nikoh ◽  
Ryuichi Koga ◽  
Kenshiro Oshima ◽  
Masahira Hattori ◽  
Takema Fukatsu

“Candidatus Serratia symbiotica” is a facultative bacterial symbiont of aphids that affects various ecological traits of the host insects. Here, we report the complete genome sequence of “Candidatus Serratia symbiotica” strain IS, consisting of a 2,736,352-bp chromosome and an 82,605-bp plasmid, from the pea aphid Acyrthosiphon pisum.


2014 ◽  
Vol 80 (18) ◽  
pp. 5818-5827 ◽  
Author(s):  
Hannah R. Dykstra ◽  
Stephanie R. Weldon ◽  
Adam J. Martinez ◽  
Jennifer A. White ◽  
Keith R. Hopper ◽  
...  

ABSTRACTMany insects are associated with heritable symbionts that mediate ecological interactions, including host protection against natural enemies. The cowpea aphid,Aphis craccivora, is a polyphagous pest that harborsHamiltonella defensa, which defends against parasitic wasps. Despite this protective benefit, this symbiont occurs only at intermediate frequencies in field populations. To identify factors constrainingH. defensainvasion inAp. craccivora, we estimated symbiont transmission rates, performed fitness assays, and measured infection dynamics in population cages to evaluate effects of infection. Similar to results with the pea aphid,Acyrthosiphon pisum, we found no consistent costs to infection using component fitness assays, but we did identify clear costs to infection in population cages when no enemies were present. Maternal transmission rates ofH. defensainAp. craccivorawere high (ca. 99%) but not perfect. Transmission failures and infection costs likely limit the spread of protectiveH. defensainAp. craccivora. We also characterized several parameters ofH. defensainfection potentially relevant to the protective phenotype. We confirmed the presence ofH. defensain aphid hemolymph, where it potentially interacts with endoparasites, and performed real-time quantitative PCR (qPCR) to estimate symbiont and phage abundance during aphid development. We also examined strain variation ofH. defensaand its bacteriophage at multiple loci, and despite our lines being collected in different regions of North America, they were infected with a nearly identical strains ofH. defensaand APSE4 phage. The limited strain diversity observed for these defensive elements may result in relatively static protection profile for this defensive symbiosis.


Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 43
Author(s):  
Cesar Auguste Badji ◽  
Zoé Sol-Mochkovitch ◽  
Charlotte Fallais ◽  
Corentin Sochard ◽  
Jean-Christophe Simon ◽  
...  

Aphids use an alarm pheromone, E-β farnesene (EBF), to warn conspecifics of potential danger. The antennal sensitivity and behavioural escape responses to EBF can be influenced by different factors. In the pea aphid, Acyrthosiphon pisum, different biotypes are adapted to different legume species, and within each biotype, different genotypes exist, which can carry or not Hamiltonella defensa, a bacterial symbiont that can confer protection against natural enemies. We investigate here the influence of the aphid genotype and symbiotic status on the escape behaviour using a four-way olfactometer and antennal sensitivity for EBF using electroantennograms (EAGs). Whereas the investigated three genotypes from two biotypes showed significantly different escape and locomotor behaviours in the presence of certain EBF doses, the infection with H. defensa did not significantly modify the escape behaviour and only marginally influenced the locomotor behaviour at high doses of EBF. Dose-response curves of EAG amplitudes after stimulation with EBF differed significantly between aphid genotypes in correlation with behavioural differences, whereas antennal sensitivity to EBF did not change significantly as a function of the symbiotic status. The protective symbiont H. defensa does thus not modify the olfactory sensitivity to the alarm pheromone. How EBF sensitivity is modified between genotypes or biotypes remains to be investigated.


2015 ◽  
Vol 282 (1811) ◽  
pp. 20150977 ◽  
Author(s):  
Ailsa H. C. McLean ◽  
H. Charles J. Godfray

Many insects harbour facultative symbiotic bacteria, some of which have been shown to provide resistance against natural enemies. One of the best-known protective symbionts is Hamiltonella defensa , which in pea aphid ( Acyrthosiphon pisum ) confers resistance against attack by parasitoid wasps in the genus Aphidius (Braconidae). We asked (i) whether this symbiont also confers protection against a phylogenetically distant group of parasitoids (Aphelinidae) and (ii) whether there are consistent differences in the effects of bacteria found in pea aphid biotypes adapted to different host plants. We found that some H. defensa strains do provide protection against an aphelinid parasitoid Aphelinus abdominalis. Hamiltonella defensa from the Lotus biotype provided high resistance to A. abdominalis and moderate to low resistance to Aphidius ervi , while the reverse was seen from Medicago biotype isolates. Aphids from Ononis showed no evidence of symbiont-mediated protection against either wasp species and were relatively vulnerable to both. Our results may reflect the different selection pressures exerted by the parasitoid community on aphids feeding on different host plants, and could help explain the maintenance of genetic diversity in bacterial symbionts.


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 805
Author(s):  
Melissa Carpenter ◽  
Linyao Peng ◽  
Andrew H. Smith ◽  
Jonah Joffe ◽  
Michael O’Connor ◽  
...  

Insects harbor a variety of maternally inherited bacterial symbionts. As such, variation in symbiont presence/absence, in the combinations of harbored symbionts, and in the genotypes of harbored symbiont species provide heritable genetic variation of potential use in the insects’ adaptive repertoires. Understanding the natural importance of symbionts is challenging but studying their dynamics over time can help to elucidate the potential for such symbiont-driven insect adaptation. Toward this end, we studied the seasonal dynamics of six maternally transferred bacterial symbiont species in the multivoltine pea aphid (Acyrthosiphon pisum). Our sampling focused on six alfalfa fields in southeastern Pennsylvania, and spanned 14 timepoints within the 2012 growing season, in addition to two overwintering periods. To test and generate hypotheses on the natural relevance of these non-essential symbionts, we examined whether symbiont dynamics correlated with any of ten measured environmental variables from the 2012 growing season, including some of known importance in the lab. We found that five symbionts changed prevalence across one or both overwintering periods, and that the same five species underwent such frequency shifts across the 2012 growing season. Intriguingly, the frequencies of these dynamic symbionts showed robust correlations with a subset of our measured environmental variables. Several of these trends supported the natural relevance of lab-discovered symbiont roles, including anti-pathogen defense. For a seventh symbiont—Hamiltonella defensa—studied previously across the same study periods, we tested whether a reported correlation between prevalence and temperature stemmed not from thermally varying host-level fitness effects, but from selection on co-infecting symbionts or on aphid-encoded alleles associated with this bacterium. In general, such “hitchhiking” effects were not evident during times with strongly correlated Hamiltonella and temperature shifts. However, we did identify at least one time period in which Hamiltonella spread was likely driven by selection on a co-infecting symbiont—Rickettsiella viridis. Recognizing the broader potential for such hitchhiking, we explored selection on co-infecting symbionts as a possible driver behind the dynamics of the remaining six species. Out of twelve examined instances of symbiont dynamics unfolding across 2-week periods or overwintering spans, we found eight in which the focal symbiont underwent parallel frequency shifts under single infection and one or more co-infection contexts. This supported the idea that phenotypic variation created by the presence/absence of individual symbionts is a direct target for selection, and that symbiont effects can be robust under co-habitation with other symbionts. Contrastingly, in two cases, we found that selection may target phenotypes emerging from symbiont co-infections, with specific species combinations driving overall trends for the focal dynamic symbionts, without correlated change under single infection. Finally, in three cases—including the one described above for Hamiltonella—our data suggested that incidental co-infection with a (dis)favored symbiont could lead to large frequency shifts for “passenger” symbionts, conferring no apparent cost or benefit. Such hitchhiking has rarely been studied in heritable symbiont systems. We propose that it is more common than appreciated, given the widespread nature of maternally inherited bacteria, and the frequency of multi-species symbiotic communities across insects.


2013 ◽  
Vol 80 (2) ◽  
pp. 470-477 ◽  
Author(s):  
Alice M. Laughton ◽  
Maretta H. Fan ◽  
Nicole M. Gerardo

ABSTRACTWhile many endosymbionts have beneficial effects on hosts under specific ecological conditions, there can also be associated costs. In order to maximize their own fitness, hosts must facilitate symbiont persistence while preventing symbiont exploitation of resources, which may require tight regulation of symbiont populations. As a host ages, the ability to invest in such mechanisms may lessen or be traded off with demands of other life history traits, such as survival and reproduction. Using the pea aphid,Acyrthosiphon pisum, we measured survival, lifetime fecundity, and immune cell counts (hemocytes, a measure of immune capacity) in the presence of facultative secondary symbionts. Additionally, we quantified the densities of the obligate primary bacterial symbiont,Buchnera aphidicola, and secondary symbionts across the host's lifetime. We found life history costs to harboring some secondary symbiont species. Secondary symbiont populations were found to increase with host age, whileBuchnerapopulations exhibited a more complicated pattern. Immune cell counts peaked at the midreproductive stage before declining in the oldest aphids. The combined effects of immunosenescence and symbiont population growth may have important consequences for symbiont transmission and maintenance within a host population.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mélanie Leclair ◽  
Christelle Buchard ◽  
Frédérique Mahéo ◽  
Jean-Christophe Simon ◽  
Yannick Outreman

In the last decade, the influence of microbial symbionts on ecological and physiological traits of their hosts has been increasingly recognized. However, most of these effects have been revealed under laboratory conditions, which oversimplifies the complexity of the factors involved in the dynamics of symbiotic associations in nature. The pea aphid, Acyrthosiphon pisum, forms a complex of plant-adapted biotypes, which strongly differ in the prevalence of their facultative endosymbionts. Some of the facultative endosymbionts of A. pisum have been shown to confer protection against natural enemies, among which Hamiltonella defensa is known to protect its host from parasitoid wasps. Here, we tested under natural conditions whether the endosymbiont communities of different A. pisum biotypes had a protective effect on their hosts and whether endosymbiotic associations and parasitoid communities associated with the pea aphid complex were linked. A space-time monitoring of symbiotic associations, parasitoid pressure and parasitoid communities was carried out in three A. pisum biotypes respectively specialized on Medicago sativa (alfalfa), Pisum sativum (pea), and Trifolium sp. (clover) throughout the whole cropping season. While symbiotic associations, and to a lesser extent, parasitoid communities were stable over time and structured mainly by the A. pisum biotypes, the parasitoid pressure strongly varied during the season and differed among the three biotypes. This suggests a limited influence of parasitoid pressure on the dynamics of facultative endosymbionts at a seasonal scale. However, we found a positive correlation between the α and β diversities of the endosymbiont and parasitoid communities, indicating interactions between these two guilds. Also, we revealed a negative correlation between the prevalence of H. defensa and Fukatsuia symbiotica in co-infection and the intensity of parasitoid pressure in the alfalfa biotype, confirming in field conditions the protective effect of this symbiotic combination.


2013 ◽  
Vol 80 (2) ◽  
pp. 525-533 ◽  
Author(s):  
Tsutomu Tsuchida ◽  
Ryuichi Koga ◽  
Akiko Fujiwara ◽  
Takema Fukatsu

ABSTRACTA gammaproteobacterial facultative symbiont of the genusRickettsiellawas recently identified in the pea aphid,Acyrthosiphon pisum. Infection with this symbiont altered the color of the aphid body from red to green, potentially affecting the host's ecological characteristics, such as attractiveness to different natural enemies. In European populations ofA. pisum, the majority ofRickettsiella-infected aphids also harbor another facultative symbiont, of the genusHamiltonella. We investigated thisRickettsiellasymbiont for its interactions with the coinfectingHamiltonellasymbiont, its phenotypic effects onA. pisumwith and withoutHamiltonellacoinfection, and its infection prevalence inA. pisumpopulations. Histological analyses revealed that coinfectingRickettsiellaandHamiltonellaexhibited overlapping localizations in secondary bacteriocytes, sheath cells, and hemolymph, whileRickettsiella-specific localization was found in oenocytes.Rickettsiellainfections consistently altered hosts' body color from red to green, where the greenish hue was affected by both host and symbiont genotypes.Rickettsiella-Hamiltonellacoinfections also changed red aphids to green; this greenish hue tended to be enhanced byHamiltonellacoinfection. With different host genotypes,Rickettsiellainfection exhibited either weakly beneficial or nearly neutral effects on host fitness, whereasHamiltonellainfection andRickettsiella-Hamiltonellacoinfection had negative effects. Despite considerable frequencies ofRickettsiellainfection in European and North AmericanA. pisumpopulations, noRickettsiellainfection was detected among 1,093 insects collected from 14 sites in Japan. On the basis of these results, we discuss possible mechanisms for the interaction ofRickettsiellawith other facultative symbionts, their effects on their hosts' phenotypes, and their persistence in natural host populations. We propose the designation “CandidatusRickettsiella viridis” for the symbiont.


Sign in / Sign up

Export Citation Format

Share Document