scholarly journals The spectral transmission of ocular media suggests ultraviolet sensitivity is widespread among mammals

2014 ◽  
Vol 281 (1780) ◽  
pp. 20132995 ◽  
Author(s):  
R. H. Douglas ◽  
G. Jeffery

Although ultraviolet (UV) sensitivity is widespread among animals it is considered rare in mammals, being restricted to the few species that have a visual pigment maximally sensitive ( λ max ) below 400 nm. However, even animals without such a pigment will be UV-sensitive if they have ocular media that transmit these wavelengths, as all visual pigments absorb significant amounts of UV if the energy level is sufficient. Although it is known that lenses of diurnal sciurid rodents, tree shrews and primates prevent UV from reaching the retina, the degree of UV transmission by ocular media of most other mammals without a visual pigment with λ max in the UV is unknown. We examined lenses of 38 mammalian species from 25 families in nine orders and observed large diversity in the degree of short-wavelength transmission. All species whose lenses removed short wavelengths had retinae specialized for high spatial resolution and relatively high cone numbers, suggesting that UV removal is primarily linked to increased acuity. Other mammals, however, such as hedgehogs, dogs, cats, ferrets and okapis had lenses transmitting significant amounts of UVA (315–400 nm), suggesting that they will be UV-sensitive even without a specific UV visual pigment.

2009 ◽  
Vol 364 (1531) ◽  
pp. 2941-2955 ◽  
Author(s):  
David M. Hunt ◽  
Livia S. Carvalho ◽  
Jill A. Cowing ◽  
Wayne L. Davies

Variation in the types and spectral characteristics of visual pigments is a common mechanism for the adaptation of the vertebrate visual system to prevailing light conditions. The extent of this diversity in mammals and birds is discussed in detail in this review, alongside an in-depth consideration of the molecular changes involved. In mammals, a nocturnal stage in early evolution is thought to underlie the reduction in the number of classes of cone visual pigment genes from four to only two, with the secondary loss of one of these genes in many monochromatic nocturnal and marine species. The trichromacy seen in many primates arises from either a polymorphism or duplication of one of these genes. In contrast, birds have retained the four ancestral cone visual pigment genes, with a generally conserved expression in either single or double cone classes. The loss of sensitivity to ultraviolet (UV) irradiation is a feature of both mammalian and avian visual evolution, with UV sensitivity retained among mammals by only a subset of rodents and marsupials. Where it is found in birds, it is not ancestral but newly acquired.


2002 ◽  
Vol 743 ◽  
Author(s):  
Hisashi Kanie ◽  
Hiroaki Okado ◽  
Takaya Yoshimura

ABSTRACTThis paper described observation of cathodoluminescence (CL) of microcrystalline InGaN bulk crystals under a scanning electron microscope (SEM) with a high-spatial-resolution (HR) CL measuring apparatus. HR-CL spectra from facets of InGaN crystals vary from facet to facet and are single peaked. Histogram analysis of the CL peak positions of HR spectra from the facets of the crystals in the area scanned during a low-resolution CL measurement shows a two-peaked form with comparable peak wavelengths. The diffusion length of a generated electron- ho le pair or an exciton from the recombination centers with a higher-energy-level state to that with a lower state is estimated to be 500 nm at the longest by the comparison of two monochromatic HR-CL images of adjoining facets.


Author(s):  
Marisa S. McDonald ◽  
Sitara Palecanda ◽  
Jonathan H. Cohen ◽  
Megan L. Porter

Stomatopod crustaceans have among the most complex eyes in the animal kingdom, with up to twelve different color detection channels. The capabilities of these unique eyes include photoreception of ultraviolet (UV) wavelengths (<400 nm). UV vision has been well characterized in adult stomatopods but has not been previously demonstrated in the comparatively simpler larval eye. Larval stomatopod eyes are developmentally distinct from their adult counterpart and have been described as lacking the visual pigment diversity and morphological specializations found in adult eyes. However, recent studies have provided evidence that larval stomatopod eyes are more complex than previously thought and warrant closer investigation. Using electroretinogram recordings in live animals we found physiological evidence of blue and UV sensitive photoreceptors in larvae of the Caribbean stomatopod species Neogonodactylus oerstedii. Transcriptomes of individual larvae were used to identify the expression of three distinct UV opsins transcripts, which may indicate the presence of multiple UV spectral channels. This is the first paper to document UV vision in any larval stomatopod, expanding our understanding of the importance of UV sensitivity in plankton. Similar to adults, larval stomatopod eyes are more complex than expected and contain previously uncharacterized molecular diversity and physiological functions.


2007 ◽  
Vol 85 (4) ◽  
pp. 584-587 ◽  
Author(s):  
A.J. Sillman ◽  
E.K. Ong ◽  
E.R. Loew

Lake sturgeon ( Acipenser fulvescens Rafinesque, 1817) photoreceptors were studied with scanning electron microscopy and microspectrophotometry. The retina contains both rods and cones, with cones estimated composing about 30% of the photoreceptor population. Only large single cones were identified and they are similar to those found in other species of the order Acipenseriformes. The rods are large, with long, broad outer segments, and are similar to the dominant rod found in other sturgeons and the North American paddlefish ( Polyodon spathula (Walbaum, 1792)). Mean (SD) rod packing density at 22 624 ± 3 509 rods/mm2 is low compared with those of other animals that function primarily in dim light. The visual pigment of the rods has a mean (SD) peak absorbance (λmax) at 541 ± 2 nm. Three different cone populations were identified: a long wavelength sensitive cone containing a visual pigment with λmax at 619 ± 3 nm; middle wavelength sensitive cone with λmax at 538 ± 1 nm; and short wavelength sensitive cone with λmax at 448 ± 1 nm. All the visual pigments are based on the vitamin A2 chromophore.


1990 ◽  
Vol 68 (7) ◽  
pp. 1544-1551 ◽  
Author(s):  
A. J. Sillman ◽  
M. D. Spanfelner ◽  
E. R. Loew

The photoreceptors in the retina of the white sturgeon, Acipenser transmontanus (Chondrostei), were studied by means of scanning electron microscopy, in situ microspectrophotometry, and spectrophotometric analysis of visual pigment extracts. The white sturgeon retina is simple in that it contains only two morphologically distinct photoreceptors. The retina is dominated by rods with large outer segments, but there is a substantial population (40%) of single cones. Evidence was found for only one rod visual pigment and one cone visual pigment. Peak spectral absorbance (λmax) of the rod pigment is near 539 nm, whereas λmax of the cone pigment is near 605 nm. Both visual pigments are porphyropsin types with chromophores based on vitamin A2. No detectable rhodopsin based on vitamin A1 is ever present, regardless of season or light regimen. The results are discussed in terms of the sturgeon's behavior, as well as the implications for the evolution of color vision.


2002 ◽  
Vol 205 (7) ◽  
pp. 927-938 ◽  
Author(s):  
Ellis R. Loew ◽  
Leo J. Fleishman ◽  
Russell G. Foster ◽  
Ignacio Provencio

SUMMARY We report microspectrophotometric (MSP) data for the visual pigments and oil droplets of 17 species of Caribbean anoline lizard known to live in differing photic habitats and having distinctly different dewlap colors. The outgroup Polychrus marmoratus was also examined to gain insight into the ancestral condition. Except for Anolis carolinensis, which is known to use vitamin A2 as its visual pigment chromophore, all anoline species examined possessed at least four vitamin-A1-based visual pigments with maximum absorbance (λmax) at 564, 495,455 and 365 nm. To the previously reported visual pigments for A. carolinensis we add an ultraviolet-sensitive one withλ max at 365 nm. Five common classes of oil droplet were measured, named according to apparent color and associated with specific cone classes — yellow and green in long-wavelength-sensitive (LWS) cones,green only in medium-wavelength-sensitive (MWS) cones and colorless in short-wavelength-sensitive (SWS) and ultraviolet-sensitive (UVS) cones. MSP data showed that the colorless droplet in the SWS cone had significant absorption between 350 and 400 nm, while the colorless droplet in the UVS cone did not. The pattern for Polychrus marmoratus was identical to that for the anoles except for the presence of a previously undescribed visual cell with a rod-like outer segment, a visual pigment with a λmaxof 497 nm and a colorless oil droplet like that in the UVS cones. These findings suggest that anoline visual pigments, as far as they determine visual system spectral sensitivity, are not necessarily adapted to the photic environment or to the color of significant visual targets (e.g. dewlaps).


1998 ◽  
Vol 201 (9) ◽  
pp. 1433-1446 ◽  
Author(s):  
N S Hart ◽  
J C Partridge ◽  
I C Cuthill

Microspectrophotometric measurements of retinal photoreceptors from the European starling (Sturnus vulgaris) revealed four classes of single cone, containing visual pigments with wavelengths of maximum absorbance (<IMG src="/images/symbols/lambda.gif" WIDTH="8" HEIGHT="12" ALIGN="BOTTOM" NATURALSIZEFLAG= "3">max) at 563, 504, 449 and close to 362 nm. The two longer-wave-sensitive single cones contained brightly coloured oil droplets which cut off light below 572 and 514 nm, respectively. The 449 nm <IMG src="/images/symbols/lambda.gif" WIDTH="8" HEIGHT="12" ALIGN="BOTTOM" NATURALSIZEFLAG="3">max pigment was associated with a 'colourless' oil droplet with peak measured absorptance below 400 nm. The ultraviolet-sensitive visual pigment was paired with a transparent oil droplet which showed no significant absorption above 350 nm. A single class of double cone was identified, both members of which contained the longwave-sensitive (<IMG src="/images/symbols/lambda.gif" WIDTH="8" HEIGHT= "12" ALIGN="BOTTOM" NATURALSIZEFLAG="3">max 563 nm) visual pigment. The principal member of the double cone contained an oil droplet with a topographically variable cut-off wavelength below 471 nm; the oil droplet found in the accessory member was only measured in the ventral retina and displayed three distinct peaks of absorption at approximately 430, 450 and 480 nm. Rod photoreceptors had a <IMG src="/images/symbols/lambda.gif" WIDTH="8" HEIGHT="12" ALIGN="BOTTOM" NATURALSIZEFLAG="3">max at 503 nm. A new polynomial for fitting visual pigment templates to ultraviolet-sensitive visual pigment data is given. Topographic density measurements of the different cone classes were made using Nitroblue-tetrazolium chloride to label selectively bleached photoreceptors. The two classes of shortwave-sensitive single cone were more abundant in the dorsal retina, and longwave-sensitive single cones were notably less abundant in the dorso-temporal region of the retina, which subserves binocular vision.


Author(s):  
J. C. Partridge ◽  
S. N. Archer ◽  
J. Vanoostrum

The visual pigments in the retinal rods of 17 species of deep-sea fish were examined by microspectrophotometry or visual pigment extract spectrophotometry. In 15 species single visual pigments were found with peak sensitivities between 470 and 490 nm, typical of deep-sea fishes. However, in one species, Stylephorons cordatus, two visual pigments were found with λ values at 470 and 481 nm. In another species, Scopelarchus analis, three visual pigments were found with mean λ values of 444, 479 and 505 nm. The short-wave pigment of this species was found both in main and accessory retinae. It was present both in single rods and in outer segments which had the most long-wave sensitive pigment in their distal parts. It is argued that these two-pigment rods are in the process of changing their visual pigment from a ‘juvenile’ VP505 pigment to an ‘adult’ VP444 pigment. The VP479 was found only as a single pigment in rods in the accessory retina.


1968 ◽  
Vol 51 (2) ◽  
pp. 125-156 ◽  
Author(s):  
George Wald

Extraction of two visual pigments from crayfish eyes prompted an electrophysiological examination of the role of visual pigments in the compound eyes of six arthropods. The intact animals were used; in crayfishes isolated eyestalks also. Thresholds were measured in terms of the absolute or relative numbers of photons per flash at various wavelengths needed to evoke a constant amplitude of electroretinogram, usually 50 µv. Two species of crayfish, as well as the green crab, possess blue- and red-sensitive receptors apparently arranged for color discrimination. In the northern crayfish, Orconectes virilis, the spectral sensitivity of the dark-adapted eye is maximal at about 550 mµ, and on adaptation to bright red or blue lights breaks into two functions with λmax respectively at about 435 and 565 mµ, apparently emanating from different receptors. The swamp crayfish, Procambarus clarkii, displays a maximum sensitivity when dark-adapted at about 570 mµ, that breaks on color adaptation into blue- and red-sensitive functions with λmax about 450 and 575 mµ, again involving different receptors. Similarly the green crab, Carcinides maenas, presents a dark-adapted sensitivity maximal at about 510 mµ that divides on color adaptation into sensitivity curves maximal near 425 and 565 mµ. Each of these organisms thus possesses an apparatus adequate for at least two-color vision, resembling that of human green-blinds (deuteranopes). The visual pigments of the red-sensitive systems have been extracted from the crayfish eyes. The horse-shoe crab, Limulus, and the lobster each possesses a single visual system, with λmax respectively at 520 and 525 mµ. Each of these is invariant with color adaptation. In each case the visual pigment had already been identified in extracts. The spider crab, Libinia emarginata, presents another variation. It possesses two visual systems apparently differentiated, not for color discrimination but for use in dim and bright light, like vertebrate rods and cones. The spectral sensitivity of the dark-adapted eye is maximal at about 490 mµ and on light adaptation, whether to blue, red, or white light, is displaced toward shorter wavelengths in what is essentially a reverse Purkinje shift. In all these animals dark adaptation appears to involve two phases: a rapid, hyperbolic fall of log threshold associated probably with visual pigment regeneration, followed by a slow, almost linear fall of log threshold that may be associated with pigment migration.


Sign in / Sign up

Export Citation Format

Share Document