scholarly journals Wheel running in the wild

2014 ◽  
Vol 281 (1786) ◽  
pp. 20140210 ◽  
Author(s):  
Johanna H. Meijer ◽  
Yuri Robbers

The importance of exercise for health and neurogenesis is becoming increasingly clear. Wheel running is often used in the laboratory for triggering enhanced activity levels, despite the common objection that this behaviour is an artefact of captivity and merely signifies neurosis or stereotypy. If wheel running is indeed caused by captive housing, wild mice are not expected to use a running wheel in nature. This however, to our knowledge, has never been tested. Here, we show that when running wheels are placed in nature, they are frequently used by wild mice, also when no extrinsic reward is provided. Bout lengths of running wheel behaviour in the wild match those for captive mice. This finding falsifies one criterion for stereotypic behaviour, and suggests that running wheel activity is an elective behaviour. In a time when lifestyle in general and lack of exercise in particular are a major cause of disease in the modern world, research into physical activity is of utmost importance. Our findings may help alleviate the main concern regarding the use of running wheels in research on exercise.

2005 ◽  
Vol 22 (1) ◽  
pp. 76-85 ◽  
Author(s):  
Michael J. Turner ◽  
Steven R. Kleeberger ◽  
J. Timothy Lightfoot

In humans, physical activity declines with age. We tested the hypothesis that genetic background and age interact to determine daily wheel-running physical activity patterns in mice. Five female mice from ten inbred strains (A/J, AKR/J, Balb/cJ, CBA/J, C3H/HeJ, C3Heb/FeJ, C57Bl/6J, C57L/J, DBA/2J, and SWR/J) were studied for 26 wk starting at 10 wk of age. All mice were housed in separate cages, each with a running wheel and magnetic sensor. Throughout the 26-wk period, age-related change in daily duration ( P < 0.0001), daily distance ( P < 0.0001), and average velocity ( P = 0.0003) differed between the inbred strains. Unlike the other strains, SWR/J mice increased their running-wheel activity throughout the 6-mo time period. Broad-sense heritability estimations for the strains across the 26-wk period ranged between 0.410 and 0.855 for the three physical activity phenotypes. Furthermore, the broad-sense heritability estimates for daily running-wheel distance differed across time and suggested an interaction between genetic background and age on physical activity in these inbred mice.


2017 ◽  
Vol 6 ◽  
Author(s):  
Katelyn B. Detweiler ◽  
Samona Rawal ◽  
Kelly S. Swanson ◽  
Maria R. C. de Godoy

AbstractThe objective of the present study was to evaluate whether access to a running wheel increases voluntary physical activity in adult female and male domestic cats. Eight neutered domestic shorthair male cats (mean age 8·6 (sd 0·05) years) and eleven intact domestic shorthair female cats (mean age 3·3 (sd 0·14) years) were group housed for 22 h daily and individually housed during the feeding period. Voluntary physical activity was measured using accelerometers. Experimental design consisted of 1 week of baseline physical activity measurement, followed by 3 weeks of wheel habituation, and 1 week of physical activity measurement post-wheel habituation. Female cat voluntary physical activity levels increased (P < 0·05) post-habituation during the dark period, resulting in an altered (P < 0·05) light:dark activity ratio, whereas male cat voluntary physical activity levels remained unchanged post-habituation. Food anticipatory activity did not differ pre- and post-habituation. However, it corresponded to a numerically greater proportion of daily physical activity for males (17·5 %) v. females (12 %). In general, female cats were more active than male cats. Habituation to a running wheel appears to be an effective method to increase voluntary physical activity of younger female cats. Thus, running wheels might be a potential strategy in the prevention or management of feline obesity.


2004 ◽  
Vol 19 (3) ◽  
pp. 270-276 ◽  
Author(s):  
J. Timothy Lightfoot ◽  
Michael J. Turner ◽  
Meredith Daves ◽  
Anna Vordermark ◽  
Steven R. Kleeberger

This project was designed to determine the genetic (between-strain) and environmental (within-strain) variance in daily running wheel activity level in inbred mice. Five male and five female mice, 9.7–15.3 wk old, from each of 13 strains (A/J, AKR/J, BALB/cJ, C3H/HeJ, C57Bl/6J, C57L/J, C3Heb/FeJ, CBA/J, DBA/2J, SWR/J, MRL/MpJ, SPRET/Ei, and CAST/Ei) as well as five female NZB/BinJ mice were housed individually. A running wheel in each cage was interfaced with a magnetic sensor to measure total daily distance and exercise time for each animal every 24 h for 21 consecutive days (3 wk). Average daily distance (km), duration (min), and velocity (m/min) for each strain was then calculated. Significant interstrain differences in average daily distance ( P < 0.001), average daily exercise duration ( P < 0.0001), and average daily exercise velocity ( P < 0.0001) were found, with C57L/J mice running farther and faster than the other strains. Sex was a significant factor in daily running wheel activity, with female mice running an average of 20% farther ( P = 0.01) and 38% faster ( P < 0.0001) than male mice. The male mice ran 15% longer duration on a daily basis ( P = 0.0091). Weight was only associated with exercise velocity in the female mice, but this relationship was not significant when subdivided by strain. Broad-sense heritability estimates on the physical activity differed by sex (for distance, male 31–48% and female 12–22%; for duration, male 44–61% and female 12–21%; for velocity, male 49–66% and female 44–61%). In conclusion, these data indicate that daily running wheel activity level in mice is significantly affected by genetic background and sex.


2006 ◽  
Vol 290 (2) ◽  
pp. R442-R448 ◽  
Author(s):  
Patrick M. Fuller ◽  
Kenneth M. Baldwin ◽  
Charles A. Fuller

It has been demonstrated that endurance exercise and chronic acceleration, i.e., hypergravity, produce comparable adaptations in a variety of physiological systems, including decreased adiposity, increased energy metabolism, and altered intermediary metabolism. Similar adaptations have not been demonstrated for skeletal muscle per se. To further differentiate between these general responses with respect to gravity and exercise, this study tested the hypothesis that chronic exercise (voluntary wheel running) and chronic acceleration (2 G via centrifugation) will induce similar changes in muscle myosin heavy chain (MHC) isoform expression in rat plantaris, a fast extensor, and in rat soleus, a slow “antigravity” extensor. The experimental design involved four groups of mature male rats ( n = 8/group): 1 G and 2 G with running wheels, and 1 G and 2 G controls without running wheels. The primary observations from the study were as follows: 1) 8 wk of 2 G are an adequate stimulus for MHC compositional changes in rat plantaris and soleus muscle; 2) both exercise and +G caused an increase in the slow MHC1 isoform in soleus muscle, suggesting that loading is a primary stimulus for this shift; and 3) 2 G and exercise appeared to have differential effects on the plantaris muscle MHC isoforms, with 2 G causing an increase in MHC2b, and exercise causing a decrease in MHC2b with a concomitant increase in MHC1, suggesting that factors other than enhanced loading, possibly locomotor activity levels, are the primary stimulus for this shift.


2000 ◽  
Vol 34 (3) ◽  
pp. 313-318 ◽  
Author(s):  
S. Banjanin ◽  
N. Mrosovsky

Mice are increasingly used in research. In particular, their wheel running is often used as a measure of activity, and as a marker of phase of circadian rhythms. Learning about the preferences of mice for different types of wheel may improve their welfare and suggest ways of increasing activity levels. Mice, Mus musculus, were given a choice between different types of running wheel by putting them in cages equipped with two wheels. Strong preferences were shown for wheels with a plastic mesh flooring, rather than the standard metal rods only. The mesh was even preferred over a solid base, although this effect was not seen in mice that had been given access only to wheels with the solid base immediately prior to the choice test. Small diameter wheels, sometimes sold as mouse wheels, were preferred less than standardsized wheels with rods. The results suggest that types of running wheel often used in laboratories can be improved by considering the animals' preferences. The types of wheel tested here are easy to maintain and entail little additional cost, while increasing the mouse's interest in running and exercise.


2017 ◽  
Vol 49 (1) ◽  
pp. 53-66 ◽  
Author(s):  
Gregory N. Ruegsegger ◽  
Ryan G. Toedebusch ◽  
Joshua F. Braselton ◽  
Thomas E. Childs ◽  
Frank W. Booth

Peak oxygen consumption (V̇o2peak) strongly predicts morbidity and mortality better than other established risk factors, yet mechanisms associated with its age-associated decline are unknown. Our laboratory has shown that V̇o2peak first begins to decrease at the same age of 19–20 wk in both sedentary and wheel-running, female Wistar rats (Toedebusch et al., Physiol Genomics. 48: 101–115, 2016). Here, we employed a total systemic approach using unsupervised interrogation of mRNA with RNA sequencing. The purpose of our study was to analyze transcriptomic profiles from both sedentary (SED) and wheel-running (RUN) conditions as a strategy to identify pathways in the left ventricle that may contribute to the initial reductions in V̇o2peak occurring between 19 and 27 wk of age. Transcriptomic comparisons were made within both SED and RUN rats between 19 and 27 wk ( n = 5–8). Analysis of mRNAs shared in SED and RUN between 19 and 27 wk found 17 upregulated (e.g., Adra1d, Rpl17, Xpo7) and 8 downregulated (e.g., Cdo1, Ctfg, Sfrp1) mRNAs, at 19 wk, respectively. Furthermore, bioinformatics analysis of mRNAs common to SED and RUN produced networks suggestive of increased connective tissue development at 27 vs. 19 wk. Additionally, Ctfg mRNA was negatively associated with V̇o2peak in both SED and RUN ( P < 0.05). In summary, transcriptomic analysis revealed mRNAs and networks associated with increased connective tissue development, decreased α-adrenergic activity, and decreased protein translation in the left ventricle that could, in part, potentially influence the initiation of the lifelong reduction in V̇o2peak, independent of physical activity levels.


2021 ◽  
pp. 002367722110365
Author(s):  
Jessica Frei ◽  
Marcus Clauss ◽  
Daniela E Winkler ◽  
Thomas Tütken ◽  
Louise F Martin

The outfit of husbandry facilities of, and the enrichment provided for, experimental rodents plays an important role in the animals’ welfare, and hence also for the societal acceptance of animal experiments. Whether rats and mice benefit from being provided with running wheels or plates is discussed controversially. Here we present observations from a feeding experiment, where rats were provided a running plate. As a pilot study, six identical cages, with three animals per cage, were filmed for six days, and the resulting footage was screened for the number of bouts and the time the animals spent on the plates. The main activities observed on the plate in descending order were sitting (18.5 ± 13.8 bouts or 8.0 ± 13.7 min/animal per day), standing (10.2 ± 11.6 bouts, 3.8 ± 4.2 min), running (8.2 ± 13.3 bouts, 10.1 ± 21.4 min), grooming (2.0 ± 2.8 bouts, 6.7 ± 25.7 min), sleeping (1.0 ± 2.6 bouts, 24.0 ± 61.8 min) and playing (0.5 ± 0.9 bouts, 0.1 ± 0.5 min). Most of these activities (91% of all bouts, 90% of total time) occurred at night, similar to previous studies on running wheel usage. The running plate seems well-accepted as cage enrichment, even though in further studies, the motivating triggers and the effects of long-term use could be evaluated more in-depth.


Sign in / Sign up

Export Citation Format

Share Document