scholarly journals Species coexistence: macroevolutionary relationships and the contingency of historical interactions

2016 ◽  
Vol 283 (1827) ◽  
pp. 20160047 ◽  
Author(s):  
Rachel M. Germain ◽  
Jason T. Weir ◽  
Benjamin Gilbert

Evolutionary biologists since Darwin have hypothesized that closely related species compete more intensely and are therefore less likely to coexist. However, recent theory posits that species diverge in two ways: either through the evolution of ‘stabilizing differences’ that promote coexistence by causing individuals to compete more strongly with conspecifics than individuals of other species, or through the evolution of ‘fitness differences’ that cause species to differ in competitive ability and lead to exclusion of the weaker competitor. We tested macroevolutionary patterns of divergence by competing pairs of annual plant species that differ in their phylogenetic relationships, and in whether they have historically occurred in the same region or different regions (sympatric versus allopatric occurrence). For sympatrically occurring species pairs, stabilizing differences rapidly increased with phylogenetic distance. However, fitness differences also increased with phylogenetic distance, resulting in coexistence outcomes that were unpredictable based on phylogenetic relationships. For allopatric species, stabilizing differences showed no trend with phylogenetic distance, whereas fitness differences increased, causing coexistence to become less likely among distant relatives. Our results illustrate the role of species' historical interactions in shaping how phylogenetic relationships structure competitive dynamics, and offer an explanation for the evolution of invasion potential of non-native species.

2021 ◽  
Author(s):  
Ali Omer ◽  
Trevor Fristoe ◽  
Qiang Yang ◽  
Mialy Razanajatovo ◽  
Patrick Weigelt ◽  
...  

Abstract Darwin’s naturalization hypothesis predicts successful invaders to be distantly related to native species, whereas his pre-adaptation hypothesis predicts the opposite. It has been suggested that depending on the invasion stage (i.e. introduction, naturalization, and invasiveness), both hypotheses, now known as Darwin’s naturalization conundrum, could hold true. We tested this by analysing whether the likelihood of introduction for cultivation as well as subsequent stages of naturalization and invasion of species alien to Southern Africa are correlated with their phylogenetic distance to the native flora of this region. While species were more likely to be introduced for cultivation if they are distantly related to the native flora, the probability of subsequent naturalization was higher for species closely related to the native flora. Furthermore, the probability of becoming invasive was higher for naturalized species distantly related to the native flora. These results were consistent across three different metrics of phylogenetic distance. Our study reveals that the relationship between phylogenetic distance to the native flora and success of an alien species depends on the invasion stage.


2019 ◽  
Vol 7 ◽  
Author(s):  
Shari Guerra ◽  
Juan Carlos Gonzalez ◽  
Emmanuel Francisco Rafael

The role of vocalisation for the Philippine hornbills' ecology and speciation and their implication in understanding speciation is not well understood. We described and compared recorded calls of seven hornbill taxa in captivity namely Mindanao Wrinkled hornbill (Rhabdotorrhinus leucocephalus), Rufous-headed hornbill (Rhabdotorrhinus waldeni), Luzon Rufous hornbill (Buceros hydrocorax hydrocorax), Samar Rufous hornbill (Buceros hydrocorax semigaleatus), Mindanao Rufous hornbill (Buceros hydrocorax mindanensis), Mindanao Tarictic hornbill (Penelopides affinis), Samar Tarictic hornbill (Penelopides samarensis), Visayan Tarictic hornbill (Penelopides panini) and Luzon Tarictic hornbill (Penelopides manillae), as well as comparison with the non-native Papuan hornbill (Rhyticeros plicatus). Vocalisation analysis included call duration, minimum frequency, maximum frequency, bandwidth and peak frequency. For each species in the sample, the mean and standard deviation were used to calculate the Cohen’s d statistic by using an effect size calculator. Results showed that the effect size for minimum frequency was small for P. panini vs. P. samarensis and B. hydrocorax vs. B. h. mindanensis. However, bandwidth, duration, minimum frequency, maximum frequency and peak frequency have large effect sizes for the rest of the allopatric species pairs. Hornbills' conspicuous resonating calls are sufficiently quantifiable for bioacoustic analysis and may provide new insights for their taxonomic review.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Suzuki Noriyuki ◽  
Naoya Osawa

The range and quality of prey species differ greatly among closely related species of predators. However, the factors responsible for this diversified niche utilization are unclear. This is because the predation and resource competition do not always prevent species coexistence. In this paper, we present evidence in support of reproductive interference as a driver of niche partitioning, focusing on aphidophagous insect. Firstly, we present closely related generalist and specialist species pairs in aphidophagous lacewings to compare the reproductive interference hypothesis with two other hypotheses that have been proposed to explain niche partitioning in lacewings and sympatric speciation through host race formation and sexual selection. Secondly, we present a case study that shows how reproductive interference can drive niche partitioning in sibling ladybird species. Thirdly, we show that many ladybird genera include species inhabiting the same region but having different food and habitat preferences, raising the possibility that reproductive interference might occur in these groups. Finally, we show that intraguild predation cannot always explain the niche partitioning in aphidophagous insects including hoverflies and parasitoids. On the basis of the evidence presented, we urge that future studies investigating predator communities should take account of the role of reproductive interference.


2019 ◽  
Vol 3 ◽  
pp. 1-10 ◽  
Author(s):  
Patrick T. Rohner ◽  
Jean-Paul Haenni ◽  
Athene Giesen ◽  
Juan Pablo Busso ◽  
Martin A. Schäfer ◽  
...  

Understanding why and how multiple species manage to coexist represents a primary goal of ecological and evolutionary research. This is of particular relevance for communities that depend on resource rich ephemeral habitats that are prone to high intra- and interspecific competition. Black scavenger flies (Diptera: Sepsidae) are common and abundant acalyptrate flies associated with livestock dung decomposition in human-influenced agricultural grasslands worldwide. Several widespread sepsid species with apparently very similar ecological niches coexist in Europe, but despite their ecological role and their use in evolutionary ecological research, our understanding of their ecological niches and spatio-temporal distribution is still rudimentary. To gain a better understanding of their ecology, we here investigate niche partitioning at two temporal scales. First, we monitored the seasonal occurrence, often related to thermal preference, over multiple years and sites in Switzerland that differ in altitude. Secondly, we also investigate fine-scale temporal succession on dairy cow pastures. In accordance with their altitudinal and latitudinal distribution in Europe, some species were common over the entire season with a peak in summer, hence classified as warm-loving, whereas others were primarily present in spring or autumn. Phenological differences thus likely contribute to species coexistence throughout the season. However, the community also showed pronounced species turnover related to cow pat age. Some species colonize particularly fresh dung and are gradually replaced by others. Furthermore, the correlation between co-occurrence and phylogenetic distance of species revealed significant under-dispersion, indicating that more closely related species are frequently recovered at the same location. As a whole, our data suggests temporal niche differentiation of closely related species that likely facilitates the rather high species diversity on Swiss cattle pastures. The underlying mechanisms allowing close relatives to co-occur however require further scrutiny.


2009 ◽  
Vol 25 (6) ◽  
pp. 571-582 ◽  
Author(s):  
Seema Nayan Sheth ◽  
Bette A. Loiselle ◽  
John G. Blake

Abstract:Lowland forests of western Amazonia contain the most species-rich primate communities in the Neotropics, which begs the question of what mechanisms operate to promote species coexistence. This study examines habitat occupancy and its relationship to phylogeny in a primate community in Amazonian Ecuador. First, as potential factors that shape community structure, we determined whether (1) mean height in the forest canopy differed among species; (2) within each species, habitat occupancy was disproportional to habitat availability; and (3) species diverged in habitat occupancy. We then tested hypotheses regarding ecological distance and its relationship to phylogenetic distance among species pairs within this community. We tested these hypotheses primarily with data derived from 15 censuses of primate species on two 100-ha plots in eastern Ecuador. In these censuses, we observed eight primate species over nearly 200 encounters. We observed larger species at greater heights in the forest canopy than smaller ones. Although they occupied habitat types at frequencies proportionate to their availability in the study area, species diverged in habitat occupancy. Although a clear relationship was not observed between phylogenetic and ecological distances among species pairs, this study suggests that ecological differences among the species in this community facilitate their coexistence.


2021 ◽  
Author(s):  
Michael B Mahon ◽  
David E. Jennings ◽  
David J Civitello ◽  
Marc J. Lajeunesse ◽  
Jason R. Rohr

Predicting the outcome and strength of species interactions is a central goal of community ecology. Researchers have proposed that outcomes of species interactions (competitive exclusion and coexistence) are a function of both phylogenetic relatedness and functional similarity. Studies relating phylogenetic distance to competition strength have shown conflicting results. Work investigating the role of phylogenetic relatedness and functional similarity in driving competitive outcomes has been limited in terms of the breadth of taxa and ecological contexts examined, which makes the generality of these studies unclear. Consequently, we gathered 1,748 pairwise competition effect sizes from 269 species and 424 unique species pairs with divergence times ranging from 1.14 to 1,275 million years and used meta-regression and model selection approaches to investigate the importance of phylogenetic relatedness and functional similarity to competition across ecological contexts. We revealed that functional similarity, but not phylogenetic relatedness, predicted the relative strength of interspecific competition (defined as the strength of interspecific competition relative to intraspecific competition). Further, we found that the presence of predators, certain habitats, increasing density of competitors, and decreasing spatial grain of experiments were all associated with more intense interspecific competition relative to intraspecific competition. Our results demonstrate that functional similarity, not phylogenetic relatedness, may explain patterns of competition-associated community assembly, highlighting the value of trait-based approaches in clarifying biotic assembly dynamics.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-9
Author(s):  
Robert M. Anderson ◽  
Amy M. Lambert

The island marble butterfly (Euchloe ausonides insulanus), thought to be extinct throughout the 20th century until re-discovered on a single remote island in Puget Sound in 1998, has become the focus of a concerted protection effort to prevent its extinction. However, efforts to “restore” island marble habitat conflict with efforts to “restore” the prairie ecosystem where it lives, because of the butterfly’s use of a non-native “weedy” host plant. Through a case study of the island marble project, we examine the practice of ecological restoration as the enactment of particular norms that define which species are understood to belong in the place being restored. We contextualize this case study within ongoing debates over the value of “native” species, indicative of deep-seated uncertainties and anxieties about the role of human intervention to alter or manage landscapes and ecosystems, in the time commonly described as the “Anthropocene.” We interpret the question of “what plants and animals belong in a particular place?” as not a question of scientific truth, but a value-laden construct of environmental management in practice, and we argue for deeper reflexivity on the part of environmental scientists and managers about the social values that inform ecological restoration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arina L. Maltseva ◽  
Marina A. Varfolomeeva ◽  
Arseniy A. Lobov ◽  
Polina O. Tikanova ◽  
Egor A. Repkin ◽  
...  

AbstractSympatric coexistence of recently diverged species raises the question of barriers restricting the gene flow between them. Reproductive isolation may be implemented at several levels, and the weakening of some, e.g. premating, barriers may require the strengthening of the others, e.g. postcopulatory ones. We analysed mating patterns and shell size of mates in recently diverged closely related species of the subgenus Littorina Neritrema (Littorinidae, Caenogastropoda) in order to assess the role of premating reproductive barriers between them. We compared mating frequencies observed in the wild with those expected based on relative densities using partial canonical correspondence analysis. We introduced the fidelity index (FI) to estimate the relative accuracy of mating with conspecific females and precopulatory isolation index (IPC) to characterize the strength of premating barriers. The species under study, with the exception of L. arcana, clearly demonstrated preferential mating with conspecifics. According to FI and IPC, L. fabalis and L. compressa appeared reliably isolated from their closest relatives within Neritrema. Individuals of these two species tend to be smaller than those of the others, highlighting the importance of shell size changes in gastropod species divergence. L. arcana males were often found in pairs with L. saxatilis females, and no interspecific size differences were revealed in this sibling species pair. We discuss the lack of discriminative mate choice in the sympatric populations of L. arcana and L. saxatilis, and possible additional mechanisms restricting gene flow between them.


Sign in / Sign up

Export Citation Format

Share Document