scholarly journals Pleasure junkies all around! Why it matters and why ‘the arts’ might be the answer: a biopsychological perspective

2017 ◽  
Vol 284 (1854) ◽  
pp. 20162837 ◽  
Author(s):  
Julia F. Christensen

Today's society is pleasure seeking. We expect to obtain pleasurable experiences fast and easily. We are used to hyper-palatable foods and drinks, and we can get pornography, games and gadgets whenever we want them. The problem: with this type of pleasure-maximizing choice behaviour we may be turning ourselves into mindless pleasure junkies, handing over our free will for the next dopamine shoot. Pleasure-only activities are fun. In excess, however, such activities might have negative effects on our biopsychological health: they provoke a change in the neural mechanisms underlying choice behaviour. Choice behaviour becomes biased towards short-term pleasure-maximizing goals, just as in the addicted brain (modulated by the amygdala, posterior ventromedial prefrontal cortex' (VMPFC), striatum, nucleus accumbens; ‘A-system’) and away from long-term prosperity and general well-being maximizing objectives (normally ensured by the insula, anterior VMPFC, hippocampus, dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC); ‘I-system‘). This paper outlines, first, what ‘pleasure’ is and what ‘pleasure-only’ activities are (e.g. social media engagement, hyper-palatable eating). Second, an account is given of the type of action that might aid to maintain the neural systems underlying choice behaviour balanced. Finally, it is proposed that engagement with the arts might be an activity with the potential to foster healthy choice behaviour—and not be just for pleasure. The evidence in this rather new field of research is still piecemeal and inconclusive. This review aims to motivate targeted research in this domain.

2020 ◽  
Vol 22 (2) ◽  
pp. 135-142

This review provides an overview of the literature regarding digital technology use and adolescent well-being. Overall, findings imply that the general effects are on the negative end of the spectrum but very small. Effects differ depending on the type of use: whereas procrastination and passive use are related to more negative effects, social and active use are related to more positive effects. Digital technology use has stronger effects on short-term markers of hedonic well-being (eg, negative affect) than long-term measures of eudaimonic well-being (eg, life satisfaction). Although adolescents are more vulnerable, effects are comparable for both adolescents and adults. It appears that both low and excessive use are related to decreased well-being, whereas moderate use is related to increased well-being. The current research still has many limitations: High-quality studies with large-scale samples, objective measures of digital technology use, and experience sampling of well-being are missing.


GeroPsych ◽  
2013 ◽  
Vol 26 (3) ◽  
pp. 185-199 ◽  
Author(s):  
Christina Röcke ◽  
Annette Brose

Whereas subjective well-being remains relatively stable across adulthood, emotional experiences show remarkable short-term variability, with younger and older adults differing in both amount and correlates. Repeatedly assessed affect data captures both the dynamics and stability as well as stabilization that may indicate emotion-regulatory processes. The article reviews (1) research approaches to intraindividual affect variability, (2) functional implications of affect variability, and (3) age differences in affect variability. Based on this review, we discuss how the broader literature on emotional aging can be better integrated with theories and concepts of intraindividual affect variability by using appropriate methodological approaches. Finally, we show how a better understanding of affect variability and its underlying processes could contribute to the long-term stabilization of well-being in old age.


Author(s):  
Michael A. Cohn ◽  
Barbara L. Fredrickson

Positive emotions include pleasant or desirable situational responses, ranging from interest and contentment to love and joy, but are distinct from pleasurable sensation and undifferentiated positive affect. These emotions are markers of people's overall well-being or happiness, but they also enhance future growth and success. This has been demonstrated in work, school, relationships, mental and physical health, and longevity. The broaden-and-build theory of positive emotions suggests that all positive emotions lead to broadened repertoires of thoughts and actions and that broadening helps build resources that contribute to future success. Unlike negative emotions, which are adapted to provide a rapid response to a focal threat, positive emotions occur in safe or controllable situations and lead more diffusely to seeking new resources or consolidating gains. These resources outlast the temporary emotional state and contribute to later success and survival. This chapter discusses the nature of positive emotions both as evolutionary adaptations to build resources and as appraisals of a situation as desirable or rich in resources. We discuss the methodological challenges of evoking positive emotions for study both in the lab and in the field and issues in observing both short-term (“broaden”) and long-term (“build”) effects. We then review the evidence that positive emotions broaden perception, attention, motivation, reasoning, and social cognition and ways in which these may be linked to positive emotions' effects on important life outcomes. We also discuss and contextualize evidence that positive emotions may be detrimental at very high levels or in certain situations. We close by discussing ways in which positive emotions theory can be harnessed by both basic and applied positive psychology research.


2019 ◽  
Vol 30 (1) ◽  
pp. 85-99 ◽  
Author(s):  
Farshad A Mansouri ◽  
Mark J Buckley ◽  
Daniel J Fehring ◽  
Keiji Tanaka

Abstract Imaging and neural activity recording studies have shown activation in the primate prefrontal cortex when shifting attention between visual dimensions is necessary to achieve goals. A fundamental unanswered question is whether representations of these dimensions emerge from top-down attentional processes mediated by prefrontal regions or from bottom-up processes within visual cortical regions. We hypothesized a causative link between prefrontal cortical regions and dimension-based behavior. In large cohorts of humans and macaque monkeys, performing the same attention shifting task, we found that both species successfully shifted between visual dimensions, but both species also showed a significant behavioral advantage/bias to a particular dimension; however, these biases were in opposite directions in humans (bias to color) versus monkeys (bias to shape). Monkeys’ bias remained after selective bilateral lesions within the anterior cingulate cortex (ACC), frontopolar cortex, dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), or superior, lateral prefrontal cortex. However, lesions within certain regions (ACC, DLPFC, or OFC) impaired monkeys’ ability to shift between these dimensions. We conclude that goal-directed processing of a particular dimension for the executive control of behavior depends on the integrity of prefrontal cortex; however, representation of competing dimensions and bias toward them does not depend on top-down prefrontal-mediated processes.


2014 ◽  
Vol 111 (4) ◽  
pp. 787-803 ◽  
Author(s):  
Michael J. Koval ◽  
R. Matthew Hutchison ◽  
Stephen G. Lomber ◽  
Stefan Everling

The dorsolateral prefrontal cortex (dlPFC) and anterior cingulate cortex (ACC) have both been implicated in the cognitive control of saccadic eye movements by single neuron recording studies in nonhuman primates and functional imaging studies in humans, but their relative roles remain unclear. Here, we reversibly deactivated either dlPFC or ACC subregions in macaque monkeys while the animals performed randomly interleaved pro- and antisaccades. In addition, we explored the whole-brain functional connectivity of these two regions by applying a seed-based resting-state functional MRI analysis in a separate cohort of monkeys. We found that unilateral dlPFC deactivation had stronger behavioral effects on saccades than unilateral ACC deactivation, and that the dlPFC displayed stronger functional connectivity with frontoparietal areas than the ACC. We suggest that the dlPFC plays a more prominent role in the preparation of pro- and antisaccades than the ACC.


2012 ◽  
Vol 33 (3-4) ◽  
pp. 365-372 ◽  
Author(s):  
Thomas Fauvel ◽  
François Brischoux ◽  
Marine Jeanne Briand ◽  
Xavier Bonnet

Long term population monitoring is essential to ecological studies; however, field procedures may disturb individuals. Assessing this topic is important in worldwide declining taxa such as reptiles. Previous studies focussed on animal welfare issues and examined short-term effects (e.g. increase of stress hormones due to handling). Long-term effects with possible consequences at the population level remain poorly investigated. In the present study, we evaluated the effects of widely used field procedures (e.g. handling, marking, forced regurgitation) both on short-term (hormonal stress response) and on long-term (changes in body condition, survival) scales in two intensively monitored populations of sea kraits (Laticauda spp.) in New Caledonia. Focusing on the most intensively monitored sites, from 2002 to 2012, we gathered approximately 11 200 captures/recaptures on 4500 individuals. Each snake was individually marked (scale clipping + branding) and subjected to various measurements (e.g. body size, head morphology, palpation). In addition, a subsample of more than 500 snakes was forced to regurgitate their prey for dietary analyses. Handling caused a significant stress hormonal response, however we found no detrimental long-term effect on body condition. Forced regurgitation did not cause any significant effect on both body condition one year later and survival. These results suggest that the strong short-term stress provoked by field procedures did not translate into negative effects on the population. Although similar analyses are required to test the validity of our conclusions in other species, our results suggest distinguishing welfare and population issues to evaluate the potential impact of population surveys.


2005 ◽  
Vol 94 (1) ◽  
pp. 512-518 ◽  
Author(s):  
A. Floyer-Lea ◽  
P. M. Matthews

The acquisition of a new motor skill is characterized first by a short-term, fast learning stage in which performance improves rapidly, and subsequently by a long-term, slower learning stage in which additional performance gains are incremental. Previous functional imaging studies have suggested that distinct brain networks mediate these two stages of learning, but direct comparisons using the same task have not been performed. Here we used a task in which subjects learn to track a continuous 8-s sequence demanding variable isometric force development between the fingers and thumb of the dominant, right hand. Learning-associated changes in brain activation were characterized using functional MRI (fMRI) during short-term learning of a novel sequence, during short-term learning after prior, brief exposure to the sequence, and over long-term (3 wk) training in the task. Short-term learning was associated with decreases in activity in the dorsolateral prefrontal, anterior cingulate, posterior parietal, primary motor, and cerebellar cortex, and with increased activation in the right cerebellar dentate nucleus, the left putamen, and left thalamus. Prefrontal, parietal, and cerebellar cortical changes were not apparent with short-term learning after prior exposure to the sequence. With long-term learning, increases in activity were found in the left primary somatosensory and motor cortex and in the right putamen. Our observations extend previous work suggesting that distinguishable networks are recruited during the different phases of motor learning. While short-term motor skill learning seems associated primarily with activation in a cortical network specific for the learned movements, long-term learning involves increased activation of a bihemispheric cortical-subcortical network in a pattern suggesting “plastic” development of new representations for both motor output and somatosensory afferent information.


Author(s):  
Peter Warr

Prominent among frameworks of well-being is the Vitamin Model, which emphasizes nonlinear associations with environmental features. The Vitamin Model has previously been described through average patterns for people in general, but we need also to explore inter-individual variations. For presentation, those differences can either be viewed generically, based on divergence in age, personality and so on, or through short-term episodes of emotion regulation, such as through situation-specific attentional focus and reappraisal. Both long-term and short-term variations are considered here.


Sign in / Sign up

Export Citation Format

Share Document