scholarly journals Leaf trait variability between and within subalpine grassland species differs depending on site conditions and herbivory

2019 ◽  
Vol 286 (1907) ◽  
pp. 20190429 ◽  
Author(s):  
Jennifer Firn ◽  
Huong Nguyen ◽  
Martin Schütz ◽  
Anita C. Risch

Plant traits are commonly used to predict ecosystem-level processes, but the validity of such predictions is dependent on the assumption that trait variability between species is greater than trait variability within a species—the robustness assumption. Here, we compare leaf trait intraspecific and interspecific variability depending on geographical differences between sites and 5 years of experimental herbivore exclusion in two vegetation types of subalpine grasslands in Switzerland. Four leaf traits were measured from eight herbaceous species common to all 18 sites. Intraspecific trait variability differed significantly depending on site and herbivory. However, the amount and structure of variability depended on the trait measured and whether considering leaf traits separately or multiple leaf traits simultaneously. Leaf phosphorus concentration showed the highest intraspecific variability, while specific leaf area showed the highest interspecific variability and displayed intraspecific variability only in response to herbivore exclusion. Species identity based on multiple traits was not predictable. We find intraspecific variability is an essential consideration when using plant functional traits as a common currency not just species mean traits. This is particularly true for leaf nutrient concentrations, which showed high intraspecific variability in response to site differences and herbivore exclusion, a finding which suggests that the robustness assumption does not always hold.

2021 ◽  
Vol 288 (1953) ◽  
pp. 20210428
Author(s):  
Staffan Jacob ◽  
Delphine Legrand

Intra- and interspecific variability can both ensure ecosystem functions. Generalizing the effects of individual and species assemblages requires understanding how much within and between species trait variation is genetically based or results from phenotypic plasticity. Phenotypic plasticity can indeed lead to rapid and important changes of trait distributions, and in turn community functionality, depending on environmental conditions, which raises a crucial question: could phenotypic plasticity modify the relative importance of intra- and interspecific variability along environmental gradients? We quantified the fundamental niche of five genotypes in monocultures for each of five ciliate species along a wide thermal gradient in standardized conditions to assess the importance of phenotypic plasticity for the level of intraspecific variability compared to differences between species. We showed that phenotypic plasticity strongly influences trait variability and reverses the relative extent of intra- and interspecific variability along the thermal gradient. Our results show that phenotypic plasticity may lead to either increase or decrease of functional trait variability along environmental gradients, making intra- and interspecific variability highly dynamic components of ecological systems.


2021 ◽  
Author(s):  
Li Zhang ◽  
Xiang Liu ◽  
Shurong Zhou ◽  
Bill Shipley

Abstract Aims While recent studies have shown the importance of intraspecific trait variation in the processes of community assembly, we still know little about the contributions of intraspecific trait variability to ecosystem functions. Methods Here, we conducted a functional group removal experiment in an alpine meadow in Qinghai-Tibetan Plateau over four years to investigate the relative importance of inter- and intra-specific variability in plant height for productivity. We split total variability in plant height within each of 75 manipulated communities into interspecific variability (TVinter) and intraspecific variability within a community (ITVwithin). Community weighted mean height among communities was decomposed into fixed community weighted mean (CWMfixed) and intraspecific variability among communities (ITVamong). We constructed a series of generalized additive mixed models and piecewise structural equation modelling to determine how trait variability (i.e., TVinter, ITVwithin, CWMfixed and ITVamong) indirectly mediated the changes in productivity in response to functional group removal. Important Findings Community productivity was not only affected directly by treatment manipulations, but also increased with both inter- and intra-specific variability (i.e., CWMfixed, ITVamong) in plant height indirectly. This suggests that both the “selection effect” and a “shade-avoidance syndrome” can incur higher CWMfixed and ITVamong, and may simultaneously operate to regulate productivity. Our findings provide new evidence that, besides interspecific variability, intraspecific trait variability in plant height also plays a role in maintaining net primary productivity.


2020 ◽  
Author(s):  
M. Robinson ◽  
A.L. Schilmiller ◽  
W.C. Wetzel

AbstractFor over 10,000 years humans have shaped plant traits through domestication. Studies of domestication have focused on changes to trait averages; however, plants also have characteristic levels of trait variability among their repeated parts, which can be heritable and mediate critical ecological interactions. Here, we ask how domestication selection has altered among-leaf trait variability using alfalfa (Medicago sativa), the oldest forage crop in the world. We found that domestication changed variability more than averages for multiple traits. Relative to wild progenitors, domesticates had elevated variability in specific leaf area, trichomes, C:N, and phytochemical concentrations and reduced variability in phytochemical composition among their leaves. Our work shows that within-plant trait variability is a novel facet of the domesticated plant phenotype, constituting a novel frontier of trait diversity within crop fields. As many critical biotic interactions occur at the scale of individual plants, our findings suggest that trait variability and diversity among leaves could act to magnify or counter the depauperate trait diversity often found at higher scales in agroecosystems.


2020 ◽  
Vol 57 (2) ◽  
pp. 105-112
Author(s):  
Mattia Baltieri ◽  
Edy Fantinato ◽  
Silvia Del Vecchio ◽  
Gabriella Buffa

Trait-based studies have become extremely common in plant ecology. In this work we analysed intraspecific trait variation of Himantoglossum adriaticum, a European endemic orchid species of Community interest, to investigate whether different populations growing on managed and abandoned semi-natural dry grasslands show differences in the CSR strategy. In seven populations occurring in Veneto Region (NE Italy), we measured H. adriaticum maximum vegetative height, leaf traits (LA, LDMC, SLA) and calculated the CSR strategy. Through CCA we investigated the relationship between plant traits and both plant community attributes (cover and height of herbs and shrubs), and geomorphologic features (aspects and slope). PERMANOVA test was used to investigate if the CSR strategy of H. adriaticum varied according to the management regime. Results showed that individuals of H. adriaticum develop different strategies when growing in different habitats. Specifically, individuals growing in managed fully sunny dry grasslands reached higher vegetative height (MH), had lower values of SLA and a higher relative contribution of the C parameter than individuals growing in abandoned dry grasslands, which, on the contrary, were shorter, had higher values of SLA (and correspondingly lower values of LDMC) and a higher relative contribution of the R parameter. Further data on reproductive traits (e.g. fruit and seed-set) may corroborate our results. Although the number of individuals addressed in this study is rather low, and our conclusions may not be considered of general validity for the species, our study demonstrated the applicability of the CSR strategy scheme in detecting functional strategies at intraspecific level.


2020 ◽  
Vol 40 (2) ◽  
pp. 245-258 ◽  
Author(s):  
Sébastien Levionnois ◽  
Sabrina Coste ◽  
Eric Nicolini ◽  
Clément Stahl ◽  
Hélène Morel ◽  
...  

Abstract Although the leaf economic spectrum has deepened our understanding of leaf trait variability, little is known about how leaf traits scale with leaf area. This uncertainty has resulted in the assumption that leaf traits should vary by keeping the same pace of variation with increases in leaf area across the leaf size range. We evaluated the scaling of morphological, tissue-surface and vascular traits with overall leaf area, and the functional significance of such scaling. We examined 1,271 leaves for morphological traits, and 124 leaves for anatomical and hydraulic traits, from 38 trees of Cecropia obtusa Trécul (Urticaceae) in French Guiana. Cecropia is a Neotropical genus of pioneer trees that can exhibit large laminas (0.4 m2 for C. obtusa), with leaf size ranging by two orders of magnitude. We measured (i) tissue fractions within petioles and their second moment of area, (ii) theoretical xylem hydraulic efficiency of petioles and (iii) the extent of leaf vessel widening within the hydraulic path. We found that different scaling of morphological trait variability allows for optimisation of lamina display among larger leaves, especially the positive allometric relationship between lamina area and petiole cross-sectional area. Increasing the fraction of pith is a key factor that increases the geometrical effect of supportive tissues on mechanical rigidity and thereby increases carbon-use efficiency. We found that increasing xylem hydraulic efficiency with vessel size results in lower leaf lamina area: xylem ratios, which also results in potential carbon savings for large leaves. We found that the vessel widening is consistent with hydraulic optimisation models. Leaf size variability modifies scaling of leaf traits in this large-leaved species.


2017 ◽  
Author(s):  
Daniel J. Peppe ◽  
Aly Baumgartner ◽  
Andrew G. Flynn ◽  
Benjamin Blonder

Plants are strongly influenced by their surrounding environment, which makes them reliable indicators of climate and ecology. The relationship between climate, ecology, plant traits and the geographic distribution of plants based on their climatic tolerances have been used to develop plant-based proxies for reconstructing paleoclimate and paleoecology. These proxies are some of the most accurate and precise methods for reconstructing the climate and ecology of ancient terrestrial ecosystems and have been applied from the Cretaceous to the Quaternary. Despite their utility, the relationships between plant traits and climate that underlie these methods are confounded by other factors such as leaf life-span and phylogenetic history. Work focused on better understanding these confounding factors, incorporating the influence of phylogeny and leaf economic spectrum traits into proxies, expanding modern leaf trait-climate and ecology calibration datasets to additional biogeographic areas and climate regimes, and developing automated computer algorithms for measuring leaf traits are important growing research areas that will help considerably improve plant-based paleoclimate and paleoecological proxies.


2022 ◽  
Vol 4 ◽  
Author(s):  
Matthew J. Hecking ◽  
Jenna M. Zukswert ◽  
John E. Drake ◽  
Martin Dovciak ◽  
Julia I. Burton

Trait-based analyses provide powerful tools for developing a generalizable, physiologically grounded understanding of how forest communities are responding to ongoing environmental changes. Key challenges lie in (1) selecting traits that best characterize the ecological performance of species in the community and (2) determining the degree and importance of intraspecific variability in those traits. Recent studies suggest that globally evident trait correlations (trait dimensions), such as the leaf economic spectrum, may be weak or absent at local scales. Moreover, trait-based analyses that utilize a mean value to represent a species may be misleading. Mean trait values are particularly problematic if species trait value rankings change along environmental gradients, resulting in species trait crossover. To assess how plant traits (1) covary at local spatial scales, (2) vary across the dominant environmental gradients, and (3) can be partitioned within and across taxa, we collected data on 9 traits for 13 tree species spanning the montane temperate—boreal forest ecotones of New York and northern New England. The primary dimension of the trait ordination was the leaf economic spectrum, with trait variability among species largely driven by differences between deciduous angiosperms and evergreen gymnosperms. A second dimension was related to variability in nitrogen to phosphorous levels and stem specific density. Levels of intraspecific trait variability differed considerably among traits, and was related to variation in light, climate, and tree developmental stage. However, trait rankings across species were generally conserved across these gradients and there was little evidence of species crossover. The persistence of the leaf economics spectrum in both temperate and high-elevation conifer forests suggests that ecological strategies of tree species are associated with trade-offs between resource acquisition and tolerance, and may be quantified with relatively few traits. Furthermore, the assumption that species may be represented with a single trait value may be warranted for some trait-based analyses provided traits were measured under similar light levels and climate conditions.


2016 ◽  
Vol 9 (11) ◽  
pp. 4227-4255 ◽  
Author(s):  
Bradley O. Christoffersen ◽  
Manuel Gloor ◽  
Sophie Fauset ◽  
Nikolaos M. Fyllas ◽  
David R. Galbraith ◽  
...  

Abstract. Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point πtlp, bulk elastic modulus ε, hydraulic capacitance Cft, xylem hydraulic conductivity ks,max, water potential at 50 % loss of conductivity for both xylem (P50,x) and stomata (P50,gs), and the leaf : sapwood area ratio Al : As). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity (Amax), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux. Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait–trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration. Remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted.


Plant Ecology ◽  
2014 ◽  
Vol 215 (11) ◽  
pp. 1351-1359 ◽  
Author(s):  
Simon Pierce ◽  
Arianna Bottinelli ◽  
Ilaria Bassani ◽  
Roberta M. Ceriani ◽  
Bruno E. L. Cerabolini

1977 ◽  
Vol 25 (2) ◽  
pp. 249 ◽  
Author(s):  
PA Parsons ◽  
IR Bock

The endemic Drosophila fauna of southern Australia consists principally of species of the typically Australian subgenus Scaptodrosophila. In Tasmania and Victoria (but less so further north), the inornata group of species within the subgenus predominates. With one exception, none of the southern species is found further north than the upland forest regions of the Queensland-New South Wales border, this being the most northern extension of floral elements of the temperate rain forests of the south. Species diversities increase with decreasing latitude, presumably because of the dependence of Drosophila species on the flora which itself becomes more diverse with decreasing latitude. Evidence is presented for a progressive reduction of niches available or exploited with increasing latitude. In very marginal habitats interspecific variability is low, paralleling low genetic intraspecific variability often found in such habitats. Species distributions are probably highly dependent upon density-independent factors of the climate, so that past climatic shifts would have been important in leading to distribution patterns found today of Drosophila populations in 'insular islands of vegetation' surrounded by unsuitable habitats.


Sign in / Sign up

Export Citation Format

Share Document