scholarly journals Sedimentation and overfishing drive changes in early succession and coral recruitment

2020 ◽  
Vol 287 (1941) ◽  
pp. 20202575
Author(s):  
Ama Wakwella ◽  
Peter J. Mumby ◽  
George Roff

Sedimentation and overfishing are important local stressors on coral reefs that can independently result in declines in coral recruitment and shifts to algal-dominated states. However, the role of herbivory in driving recovery across environmental gradients is often unclear. Here we investigate early successional benthic communities and coral recruitment across a sediment gradient in Palau, Micronesia over a 12-month period. Total sedimentation rates measured by ‘TurfPods’ varied from 0.03 ± 0.1 SE mg cm −2 d −1 at offshore sites to 1.32 ± 0.2 mg cm −2 d −1 at inshore sites. To assess benthic succession, three-dimensional settlement tiles were deployed at sites with experimental cages used to exclude tile access to larger herbivorous fish. Benthic assemblages exhibited rapid transitions across the sediment gradient within three months of deployment. At low levels of sedimentation (less than 0.6 mg cm −2 d −1 ), herbivory resulted in communities dominated by coral recruitment inducers (short turf algae and crustose coralline algae), whereas exclusion of herbivores resulted in the overgrowth of coral inhibitors (encrusting and upright foliose macroalgae). An ‘inducer threshold’ was found under increasing levels of sedimentation (greater than 0.6 mg cm −2 d −1 ), with coral inducers having limited to no presence in communities, and herbivore access to tiles resulted in sediment-laden turf algal assemblages, while exclusion of herbivores resulted in invertebrates (sponges, ascidians) and terrestrial sediment accumulation. A ‘coral recruitment threshold’ was found at 0.8 mg cm −2 d −1 , below which net coral recruitment was reduced by 50% in the absence of herbivores, while recruitment was minimal above the threshold. Our results highlight nonlinear trajectories of benthic succession across sediment gradients and identify strong interactions between sediment and herbivory that have cascading effects on coral recruitment. Local management strategies that aim to reduce sedimentation and turbidity and manage herbivore fisheries can have measurable effects on benthic community succession and coral recruitment, enhancing reef resilience and driving coral recovery.

2015 ◽  
Vol 16 (2) ◽  
pp. 413 ◽  
Author(s):  
B. CALCINAI ◽  
M. BERTOLINO ◽  
G. BAVESTRELLO ◽  
S. MONTORI ◽  
M. MORI ◽  
...  

Coralligenous habitat results from a multi-stratified accumulation of crustose coralline algae and animal builders in a dynamic equilibrium with disruptive agents. The result is a complex architecture crossed by crevices and holes. Due to this three-dimensional structure, coralligenous may host a rich and diversified fauna, more abundant than any other Mediterranean habitat. Unfortunately, very few data are available about the cryptic fauna that lives inside the conglomerate. As already reported for coral reefs, the cryptic fauna plays an important role in the exchange of material and energy between water column and benthic assemblages. Here we compare the sponge community present inside and outside the coralligenous framework of Portofino Promontory (Ligurian Sea) at different depths (15 and 30 meters) not only in terms of taxonomic diversity but for the first time also in term of biomass. Sponges present on the surface of each block were collected, weighed and identified; after blocks dissolution in HCl, target cryptic sponges were separated from other organisms, weighed, and identified. We recorded a total of 62 sponge species. The average number of sponge taxa occurring outside the coralligenous accretions is lower than the number of taxa identified inside. This pattern is confirmed also regarding sponge biomass. These results underlines that studies focused on coralligenous functioning should take in account the important contribution of cryptic fauna, as recently evidenced also for tropical reef habitats.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ilse Valenzuela Matus ◽  
Jorge Lino Alves ◽  
Joaquim Góis ◽  
Augusto Barata da Rocha ◽  
Rui Neto ◽  
...  

Purpose The purpose of this paper is to prove and qualify the influence of textured surface substrates morphology and chemical composition on the growth and propagation of transplanted corals. Use additive manufacturing and silicone moulds for converting three-dimensional samples into limestone mortar with white Portland cement substrates for coral growth. Design/methodology/approach Tiles samples were designed and printed with different geometries and textures inspired by nature marine environment. Commercial coral frag tiles were analysed through scanning electron microscopy (SEM) to identify the main chemical elements. Raw materials and coral species were selected. New base substrates were manufactured and deployed into a closed-circuit aquarium to monitor the coral weekly evolution process and analyse the results obtained. Findings Experimental results provided positive statistical parameters for future implementation tests, concluding that the intensity of textured surface, interfered favourably in the coralline algae biofilm growth. The chemical composition and design of the substrates were determinant factors for successful coral propagation. Recesses and cavities mimic the natural rocks aspect and promoted the presence and interaction of other species that favour the richness of the ecosystem. Originality/value Additive manufacturing provided an innovative method of production for ecology restoration areas, allowing rapid prototyping of substrates with high complexity morphologies, a critical and fundamental attribute to guarantee coral growth and Crustose Coralline Algae. The result of this study showed the feasibility of this approach using three-dimensional printing technologies.


2021 ◽  
Author(s):  
Mari E. Deinhart ◽  
Matthew S. Mills ◽  
Tom Schils

AbstractSuccessful recruitment of invertebrate larvae to reef substrates is essential to the health of tropical coral reef ecosystems and their capacity to recover from disturbances. Crustose calcifying red algae (CCRA) have been identified as important recruitment substrates for scleractinian corals. As such, CCRA as a whole or subgroups (e.g., crustose coralline algae, CCA) are often used at the functional group level in experimental, ecological, and monitoring studies. Species of CCRA, however, differ in their ecological roles and their value as coral recruitment substrates. Here, we (1) investigate the species richness and community composition of CCRA on experimental coral recruitment tiles, and (2) assess if there is a recruitment preference of the coral Acropora surculosa for any of these CCRA species. 27 species of two orders of CCRA (Corallinales and Peyssonneliales) were identified from the recruit tiles. None of the DNA sequences of these species matched released sequences in GenBank or sequences of CCRA collected from natural reef systems in Guam. The similarity in CCRA communities between the recruitment tiles was high. Two species of CCRA were significantly preferred as recruitment substrates over the other CCRA species. Both of these species belonged to the subfamily of the Lithophylloideae. These two species are closely related to Pacific species that have been referred to as Titanoderma -but probably have to be assigned to another genus- and many of the latter have been attributed to be preferred coral recruitment substrates. Of all CCRA, Lithophylloideae sp. 1 had the highest benthic cover on the recruitment tiles and was the most preferred recruitment substrate. These findings highlight the high taxonomic diversity of CCRA communities and provide insight into species-specific ecological roles of CCRA that are often overlooked.


2020 ◽  
Vol 12 (6) ◽  
pp. 1011 ◽  
Author(s):  
Atsuko Fukunaga ◽  
John H. R. Burns ◽  
Kailey H. Pascoe ◽  
Randall K. Kosaki

Quantifying the three-dimensional (3D) habitat structure of coral reefs is an important aspect of coral reef monitoring, as habitat architecture affects the abundance and diversity of reef organisms. Here, we used photogrammetric techniques to generate 3D reconstructions of coral reefs and examined relationships between benthic cover and various habitat metrics obtained at six different resolutions of raster cells, ranging from 1 to 32 cm. For metrics of 3D structural complexity, fractal dimension, which utilizes information on 3D surface areas obtained at different resolutions, and vector ruggedness measure (VRM) obtained at 1-, 2- or 4-cm resolution correlated well with benthic cover, with a relatively large amount of variability in these metrics being explained by the proportions of corals and crustose coralline algae. Curvature measures were, on the other hand, correlated with branching and mounding coral cover when obtained at 1-cm resolution, but the amount of variability explained by benthic cover was generally very low when obtained at all other resolutions. These results show that either fractal dimension or VRM obtained at 1-, 2- or 4-cm resolution, along with curvature obtained at 1-cm resolution, can effectively capture the 3D habitat structure provided by specific benthic organisms.


2017 ◽  
Vol 284 (1862) ◽  
pp. 20171536 ◽  
Author(s):  
Katharina E. Fabricius ◽  
Sam H. C. Noonan ◽  
David Abrego ◽  
Lindsay Harrington ◽  
Glenn De'ath

The future of coral reefs under increasing CO 2 depends on their capacity to recover from disturbances. To predict the recovery potential of coral communities that are fully acclimatized to elevated CO 2 , we compared the relative success of coral recruitment and later life stages at two volcanic CO 2 seeps and adjacent control sites in Papua New Guinea. Our field experiments showed that the effects of ocean acidification (OA) on coral recruitment rates were up to an order of magnitude greater than the effects on the survival and growth of established corals. Settlement rates, recruit and juvenile densities were best predicted by the presence of crustose coralline algae, as opposed to the direct effects of seawater CO 2 . Offspring from high CO 2 acclimatized parents had similarly impaired settlement rates as offspring from control parents. For most coral taxa, field data showed no evidence of cumulative and compounding detrimental effects of high CO 2 on successive life stages, and three taxa showed improved adult performance at high CO 2 that compensated for their low recruitment rates. Our data suggest that severely declining capacity for reefs to recover, due to altered settlement substrata and reduced coral recruitment, is likely to become a dominant mechanism of how OA will alter coral reefs.


2021 ◽  
Vol 8 ◽  
Author(s):  
Richard S. Appeldoorn ◽  
David L. Ballantine ◽  
Milton Carlo ◽  
Juan J. Cruz Motta ◽  
Michael Nemeth ◽  
...  

There is limited information on the intra-annual variability of mesophotic coral ecosystems (MCEs), worldwide. The benthic communities, measured as % cover, of two geomorphologically different mesophotic sites (El Hoyo and Hole-in-the-Wall) were examined during 2009–2010 in southwest Puerto Rico. Depths sampled were 50 and 70 m. At each site/depth combination, two permanent transects, measuring 10-m long by 40-cm wide, were surveyed by successive photoquadrants, 0.24 m2 in area. Scleractinian corals, octocorals, macroalgae, crustose coralline algae (CCA), sponges and unconsolidated sediment were the main components along the transects. Significant community differences were observed both among sites and among depths. Differences among sites were greater at 50 m than at 70 m. The El Hoyo site at 50 m was the most divergent, and this was due to a lower coral and sponge cover and a higher algal cover (Amphiroa spp., Peyssonnelia iridescens, turf) relative to the other site/depth combinations. As a consequence, the differences in community structure with depth were larger at El Hoyo than at Hole-in-the-Wall. The communities at 70 m were distinguished from those at 50 m by the greater proportion of the corals Agaricia undata, Madracis pharensis and CCA, and a reduced cover of the cyanobacterium Schizothrix. Temporal variation in the benthic assemblages was documented throughout the year. For both mesophotic sites, the magnitude of change at 50 m was significantly greater than at 70 m. For both depths, the magnitude of change at El Hoyo was significantly greater than at Hole-in-the-Wall. All assemblages experienced almost the same temporal patterns, despite the differences in species composition across sites and depths. Changes in temporal patterns are driven by an increase in the percent cover of the macroalgae Dictyota spp., and a decrease in the percent cover of non-colonized substrata (sand, pavement or rubble). Relatively rapid, intra-annual changes are dictated by the negative correlation between cyclic Dictyota spp. cover and open substrata cover. Other observed mechanisms for rapid community changes in the photoquadrants were diseases and collapses of substrata along with their associated fauna indicating that small-scale disturbance processes may play an important role within MCEs.


2014 ◽  
Author(s):  
Sarah W Davies ◽  
Eli Meyer ◽  
Sarah M Guermond ◽  
Mikhail V Matz

Caribbean coral reefs have deteriorated substantially over the past 30 years, which is broadly attributable to the effects of global climate change. In the same time, Indo-Pacific reefs maintain higher coral cover and typically recover rapidly after disturbances. This difference in reef resilience is largely due to much higher coral recruitment rates in the Pacific. We hypothesized that the lack of Caribbean coral recruitment might be explained by diminishing quality of settlement cues and/or impaired sensitivity of Caribbean coral larvae to those cues, relative to the Pacific. To evaluate this hypothesis, we assembled a collection of bulk samples of reef encrusting communities, mostly consisting of crustose coralline algae (CCA), from various reefs around the world and tested them as settlement cues for several coral species originating from different ocean provinces. Cue samples were meta-barcoded to evaluate their taxonomic diversity. We observed no systematic differences either in cue potency or in strength of larval responses depending on the ocean province, and no preference of coral larvae towards cues from the same ocean. Instead, we detected significant differences in cue preferences among coral species, even for corals originating from the same reef. We conclude that the region-wide disruption of the settlement process is unlikely to be the major cause of Caribbean reef loss. However, due to their high sensitivity to the effects of climate change, shifts in the composition of CCA-associated communities, combined with pronounced differences in cue preferences among coral species, could substantially influence future coral community structure.


2014 ◽  
Author(s):  
Sarah W Davies ◽  
Eli Meyer ◽  
Sarah M Guermond ◽  
Mikhail V Matz

Caribbean coral reefs have deteriorated substantially over the past 30 years, which is broadly attributable to the effects of global climate change. In the same time, Indo-Pacific reefs maintain higher coral cover and typically recover rapidly after disturbances. This difference in reef resilience is largely due to much higher coral recruitment rates in the Pacific. We hypothesized that the lack of Caribbean coral recruitment might be explained by diminishing quality of settlement cues and/or impaired sensitivity of Caribbean coral larvae to those cues, relative to the Pacific. To evaluate this hypothesis, we assembled a collection of bulk samples of reef encrusting communities, mostly consisting of crustose coralline algae (CCA), from various reefs around the world and tested them as settlement cues for several coral species originating from different ocean provinces. Cue samples were meta-barcoded to evaluate their taxonomic diversity. We observed no systematic differences either in cue potency or in strength of larval responses depending on the ocean province, and no preference of coral larvae towards cues from the same ocean. Instead, we detected significant differences in cue preferences among coral species, even for corals originating from the same reef. We conclude that the region-wide disruption of the settlement process is unlikely to be the major cause of Caribbean reef loss. However, due to their high sensitivity to the effects of climate change, shifts in the composition of CCA-associated communities, combined with pronounced differences in cue preferences among coral species, could substantially influence future coral community structure.


Coral Reefs ◽  
2021 ◽  
Author(s):  
Alexandra Ramírez-Viaña ◽  
Guillermo Diaz-Pulido ◽  
Rocío García-Urueña

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2622
Author(s):  
Romina Oliva ◽  
Abdul Rajjak Shaikh ◽  
Andrea Petta ◽  
Anna Vangone ◽  
Luigi Cavallo

The crown of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is constituted by its spike (S) glycoprotein. S protein mediates the SARS-CoV-2 entry into the host cells. The “fusion core” of the heptad repeat 1 (HR1) on S plays a crucial role in the virus infectivity, as it is part of a key membrane fusion architecture. While SARS-CoV-2 was becoming a global threat, scientists have been accumulating data on the virus at an impressive pace, both in terms of genomic sequences and of three-dimensional structures. On 15 February 2021, from the SARS-CoV-2 genomic sequences in the GISAID resource, we collected 415,673 complete S protein sequences and identified all the mutations occurring in the HR1 fusion core. This is a 21-residue segment, which, in the post-fusion conformation of the protein, gives many strong interactions with the heptad repeat 2, bringing viral and cellular membranes in proximity for fusion. We investigated the frequency and structural effect of novel mutations accumulated over time in such a crucial region for the virus infectivity. Three mutations were quite frequent, occurring in over 0.1% of the total sequences. These were S929T, D936Y, and S949F, all in the N-terminal half of the HR1 fusion core segment and particularly spread in Europe and USA. The most frequent of them, D936Y, was present in 17% of sequences from Finland and 12% of sequences from Sweden. In the post-fusion conformation of the unmutated S protein, D936 is involved in an inter-monomer salt bridge with R1185. We investigated the effect of the D936Y mutation on the pre-fusion and post-fusion state of the protein by using molecular dynamics, showing how it especially affects the latter one.


Sign in / Sign up

Export Citation Format

Share Document