scholarly journals Long-term exposure to artificial light at night in the wild decreases survival and growth of a coral reef fish

2021 ◽  
Vol 288 (1952) ◽  
pp. 20210454
Author(s):  
Jules Schligler ◽  
Daphne Cortese ◽  
Ricardo Beldade ◽  
Stephen E. Swearer ◽  
Suzanne C. Mills

Artificial light at night (ALAN) is an increasing anthropogenic pollutant, closely associated with human population density, and now well recognized in both terrestrial and aquatic environments. However, we have a relatively poor understanding of the effects of ALAN in the marine realm. Here, we carried out a field experiment in the coral reef lagoon of Moorea, French Polynesia, to investigate the effects of long-term exposure (18–23 months) to chronic light pollution at night on the survival and growth of wild juvenile orange-fin anemonefish, Amphiprion chrysopterus . Long-term exposure to environmentally relevant underwater illuminance (mean: 4.3 lux), reduced survival (mean: 36%) and growth (mean: 44%) of juvenile anemonefish compared to that of juveniles exposed to natural moonlight underwater (mean: 0.03 lux). Our study carried out in an ecologically realistic situation in which the direct effects of artificial lighting on juvenile anemonefish are combined with the indirect consequences of artificial lighting on other species, such as their competitors, predators, and prey, revealed the negative impacts of ALAN on life-history traits. Not only are there immediate impacts of ALAN on mortality, but the decreased growth of surviving individuals may also have considerable fitness consequences later in life. Future studies examining the mechanisms behind these findings are vital to understand how organisms can cope and survive in nature under this globally increasing pollutant.

2019 ◽  
Vol 180 ◽  
pp. 104928
Author(s):  
Rakamaly Madi Moussa ◽  
Lily Fogg ◽  
Frédéric Bertucci ◽  
Maelle Calandra ◽  
Antoine Collin ◽  
...  
Keyword(s):  

Coral Reefs ◽  
1999 ◽  
Vol 18 (3) ◽  
pp. 293-296 ◽  
Author(s):  
D. Augustin ◽  
G. Richard ◽  
B. Salvat

2020 ◽  
Vol 499 (4) ◽  
pp. 5075-5089
Author(s):  
S Cavazzani ◽  
S Ortolani ◽  
A Bertolo ◽  
R Binotto ◽  
P Fiorentin ◽  
...  

ABSTRACT The study of artificial light at night (ALAN) by satellite is very important for the analysis of new astronomical sites and for the long-term temporal evolution observation of the emission from the ground. The analysis of satellite data presents many advantages but also some critical points because of fluctuations in measurements. The main result of this paper is the discovery of a correlation between these fluctuations and the aerosol concentration combined with cloud cover and lunar cycles. In this work, we also present a mathematical empirical model for the light pollution propagation study in relation to the aerosol concentration detected by satellite. We apply this model to the astronomical site of Asiago (Ekar Observatory) providing a possible explanation for the temporal ALAN fluctuations detected by satellite. Finally, we validate the results with the ground collected data.


2021 ◽  
Vol 14 (2) ◽  
pp. 260-270
Author(s):  
Gregor Kalinkat ◽  
Maja Grubisic ◽  
Andreas Jechow ◽  
Roy H. A. Grunsven ◽  
Sibylle Schroer ◽  
...  

2020 ◽  
Author(s):  
Oscar Humberto Marín Gómez

AbstractUrban birds around the world have to cope with dominant city stressors as anthropogenic noise and artificial light at night by adjusting the temporal and spectral traits of their acoustic signals. It is widely known that higher anthropogenic noise and artificial light levels can disrupt the morning singing routines, but its influence in tropical urban birds remains poorly explored. Here, I assessed the association between light and noise pollution with the dawn chorus onset of the Saffron Finch (Sicalis flaveola) in an Andean city of Colombia. I studied 32 urban sites distributed in the north of the city, which comprise different conditions of urban development based on the built cover. I annotated the time when the first individual of the Saffron Finch was heard at each site and then I obtained anthropogenic noise and artificial light at night measurements using a smartphone. Findings of this study show that Saffron Finches living in highly developed sites sang earlier at dawn than those occupying less urbanized sites. Unexpectedly this timing difference was related to artificial lighting instead of anthropogenic noise, suggesting that artificial light could drive earlier dawn chorus in a tropical urban bird. Saffron Finches could take advantage of earlier singing for signaling territorial ownership among neighbors, as expected by the social dynamic hypothesis. However, findings of this study should be interpreted carefully because the dawn chorus is a complex phenomenon influenced by many multiple factors. Future studies need to assess the influence of ALAN on the dawn chorus timing of Neotropical urban birds by taking into account the influence of confounding factors related to urbanization as well as meteorological, ecological, and social drivers.


2020 ◽  
Vol 21 (17) ◽  
pp. 6140
Author(s):  
Stan Moaraf ◽  
Rachel Heiblum ◽  
Yulia Vistoropsky ◽  
Monika Okuliarová ◽  
Michal Zeman ◽  
...  

Despite growing evidence that demonstrate adverse effects of artificial light at night (ALAN) on many species, relatively little is known regarding its effects on brain plasticity in birds. We recently showed that although ALAN increases cell proliferation in brains of birds, neuronal densities in two brain regions decreased, indicating neuronal death, which might be due to mortality of newly produced neurons or of existing ones. Therefore, in the present study we studied the effect of long-term ALAN on the recruitment of newborn neurons into their target regions in the brain. Accordingly, we exposed zebra finches (Taeniopygia guttata) to 5 lux ALAN, and analysed new neuronal recruitment and total neuronal densities in several brain regions. We found that ALAN increased neuronal recruitment, possibly as a compensatory response to ALAN-induced neuronal death, and/or due to increased nocturnal locomotor activity caused by sleep disruption. Moreover, ALAN also had a differential temporal effect on neuronal densities, because hippocampus was more sensitive to ALAN and its neuronal densities were more affected than in other brain regions. Nocturnal melatonin levels under ALAN were significantly lower compared to controls, indicating that very low ALAN intensities suppress melatonin not only in nocturnal, but also in diurnal species.


2020 ◽  
Vol 223 (19) ◽  
pp. jeb229146
Author(s):  
Alan J. A. Stewart ◽  
Craig D. Perl ◽  
Jeremy E. Niven

ABSTRACTArtificial lighting at night (ALAN) is increasingly recognised as having negative effects on many organisms, though the exact mechanisms remain unclear. Glow worms are likely susceptible to ALAN because females use bioluminescence to signal to attract males. We quantified the impact of ALAN by comparing the efficacy of traps that mimicked females to attract males in the presence or absence of a white artificial light source (ALS). Illuminated traps attracted fewer males than did traps in the dark. Illuminated traps closer to the ALS attracted fewer males than those further away, whereas traps in the dark attracted similar numbers of males up to 40 m from the ALS. Thus, ALAN impedes females' ability to attract males, the effect increasing with light intensity. Consequently, ALAN potentially affects glow worms' fecundity and long-term population survival. More broadly, this study emphasises the potentially severe deleterious effects of ALAN upon nocturnal insect populations.


2021 ◽  
Vol 9 ◽  
Author(s):  
Krystie A. Miner ◽  
Mar Huertas ◽  
Andrea S. Aspbury ◽  
Caitlin R. Gabor

Human population growth and its associated effects on the environment contribute to the rapid decrease of biodiversity worldwide. Artificial light at night (ALAN) is an anthropogenic pollutant that is increasing with the spread of urbanization and may contribute to biodiversity declines. ALAN alters the migration patterns of birds, communication in frogs, and impacts reproduction, behavior, and physiology of multiple other taxa. However, most of the studies on ALAN are based on terrestrial systems, and overall, the effects of ALAN on freshwater organisms are poorly understood. We investigated how ALAN affects the physiology, behavior, and reproduction of a widespread, tolerant species of freshwater fish. Gambusia affinis are small livebearing fish often found in urban streams. We exposed groups of female G. affinis to either a natural light cycle or a constant 24-h light cycle (ALAN) in the laboratory for 60 days. In another experiment, we exposed female G. affinis to the same treatments in outdoor mesocosms for 32 days. We found that exposure to ALAN lowered glucose levels in the brain and decreased swimming activity, but had no effect on cortisol release rates, reproduction, survival, or growth. This research is strengthened by measuring multiple metrics in response to ALAN and by incorporating both a field and laboratory component which confirm similar results. These results suggest that this tolerant species of fish may behaviorally adjust to ALAN rather than modulate their endocrine stress response.


2015 ◽  
Vol 370 (1667) ◽  
pp. 20140130 ◽  
Author(s):  
Franz Hölker ◽  
Christian Wurzbacher ◽  
Carsten Weißenborn ◽  
Michael T. Monaghan ◽  
Stephanie I. J. Holzhauer ◽  
...  

An increasing proportion of the Earth's surface is illuminated at night. In aquatic ecosystems, artificial light at night (ALAN) may influence microbial communities living in the sediments. These communities are highly diverse and play an important role in the global carbon cycle. We combined field and laboratory experiments using sediments from an agricultural drainage system to examine how ALAN affects communities and alters carbon mineralization. Two identical light infrastructures were installed parallel to a drainage ditch before the start of the experiment. DNA metabarcoding indicated that both sediment communities were similar. After one was lit for five months (July–December 2012) we observed an increase in photoautotroph abundance (diatoms, Cyanobacteria ) in ALAN-exposed sediments. In laboratory incubations mimicking summer and winter (six weeks each), communities in sediments that were exposed to ALAN for 1 year (July 2012–June 2013) showed less overall seasonal change compared with ALAN-naive sediments. Nocturnal community respiration was reduced in ALAN-exposed sediments. In long-term exposed summer-sediments, we observed a shift from negative to positive net ecosystem production. Our results indicate ALAN may alter sediment microbial communities over time, with implications for ecosystem-level functions. It may thus have the potential to transform inland waters to nocturnal carbon sinks.


Sign in / Sign up

Export Citation Format

Share Document