The instability of the thin vortex ring of constant vorticity

A theoretical investigation of the instability of a vortex ring to short azimuthal bending waves is presented. The theory considers only the stability of a thin vortex ring with a core of constant vorticity (constant /r) in an ideal fluid. Both the mean flow and the disturbance flow are found as an asymptotic solution in e = a /R, the ratio of core radius to ring radius. Only terms linear in wave amplitude are retained in the stability analysis. The solution to 0 (e 2 ) is presented, although the details of the stability analysis are carried through completely only for a special class of bending waves that are known to be unstable on a line filament in the presence of strain (Tsai & Widnall 1976) and have been identified in the simple model of Widnall, Bliss & Tsai (1974) as a likely mode of instability for the vortex ring: these occur at certain critical wavenumbers for which waves on a line filament of the same vorticity distribution would not rotate (w 0 = 0). The ring is found to be always unstable for at least the lowest two critical wavenumbers ( ka = 2.5 and 4.35). The amplification rate and wavenumber predicted by the theory are found to be in good agreement with available experimental results.

2001 ◽  
Vol 449 ◽  
pp. 1-37 ◽  
Author(s):  
FABIEN S. GODEFERD ◽  
CLAUDE CAMBON ◽  
S. LEBLANC

The stability analysis of a street of Stuart vortices in a rotating frame is performed by integrating the Kelvin–Townsend equations along the mean flow trajectories, using the geometrical optics technique (Lifschitz & Hameiri 1991) for short-wave perturbations. A parallel is drawn between the formulations of this zonal approach and that of rapid distortion theory, better known to the turbulence community. The results presented confirm those obtained by the standard stability analysis based on normal-mode decomposition: depending on the rotation parameter and the oblique mode considered, three unstable zones are identified, related to the centrifugal, elliptic and hyperbolic instabilities, as observed for Taylor–Green cells (Sipp et al. 1999). Anticyclonic rotation is shown to destabilize Stuart vortices through a combination of the elliptical and centrifugal instability mechanisms, depending on the ratio of its rate to the structure core vorticity. Available stability criteria are discussed in the general case of two-dimensional rotating flows, in relation to their streamline topology and the values of the local Rossby number or vorticity.


2014 ◽  
Vol 757 ◽  
pp. 1-32 ◽  
Author(s):  
Kilian Oberleithner ◽  
Lothar Rukes ◽  
Julio Soria

AbstractLinear stability analysis (LSA) is applied to the mean flow of an oscillating round jet with the aim of investigating the robustness and accuracy of mean flow stability wave models. The jet’s axisymmetric mode is excited at the nozzle lip through a sinusoidal modulation of the flow rate at amplitudes ranging from 0.1 % to 100 %. The instantaneous flow field is measured via particle image velocimetry (PIV) and decomposed into a mean and periodic part utilizing proper orthogonal decomposition (POD). Local LSA is applied to the measured mean flow adopting a weakly non-parallel flow approach. The resulting global perturbation field is carefully compared with the measurements in terms of spatial growth rate, phase velocity, and phase and amplitude distribution. It is shown that the stability wave model accurately predicts the excited flow oscillations during their entire growth phase and during a large part of their decay phase. The stability wave model applies over a wide range of forcing amplitudes, showing no pronounced sensitivity to the strength of nonlinear saturation. The upstream displacement of the neutral point and the successive reduction of gain with increasing forcing amplitude is very well captured by the stability wave model. At very strong forcing ($\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}{>}40\, \%$), the flow becomes essentially stable to the axisymmetric mode. For these extreme cases, the prediction deteriorates from the measurements due to an interaction of the forced wave with the geometric confinement of the nozzle. Moreover, the model fails far downstream in a region where energy is transferred from the oscillation back to the mean flow. This study supports previously conducted mean flow stability analysis of self-excited flow oscillations in the cylinder wake and in the vortex breakdown bubble and extends the methodology to externally forced convectively unstable flows. The high accuracy of mean flow stability wave models as demonstrated here is of great importance for the analysis of coherent structures in turbulent shear flows.


1995 ◽  
Vol 297 ◽  
pp. 1-28 ◽  
Author(s):  
J. D. Swearingen ◽  
J. D. Crouch ◽  
R. A. Handler

Direct numerical simulations were used to study the dynamics of a vortex ring impacting a wall at normal incidence. The boundary layer formed as the ring approaches the wall undergoes separation and roll-up to form a secondary vortex ring. The secondary ring can develop azimuthal instabilities which grow rapidly owing to vortex stretching and tilting in the presence of the mean strain field generated by the primary vortex ring. The stability of the secondary ring was investigated through complementary numerical experiments and stability analysis. Both perturbed and unperturbed evolutions of the secondary ring were simulated at a Reynolds number of about 645, based on the initial primary-ring propagation velocity and ring diameter. The linear evolution of the secondary vortex-ring instability was modelled analytically by making use of a quasi-steady approximation. This allowed a localized stability analysis following Widnall & Sullivan's (1973) earlier treatment of an isolated vortex ring. Amplitude evolution and growth-rate predictions from this analysis are in good agreement with the simulation results. The analysis shows that the secondary vortex ring is unstable to long-wavelength perturbations, even though an isolated ring having similar characteristics would be stable.


2011 ◽  
Vol 137 ◽  
pp. 72-76
Author(s):  
Wei Zhang ◽  
Xian Wen ◽  
Yan Qun Jiang

A proper orthogonal decomposition (POD) method is applied to study the global stability analysis for flow past a stationary circular cylinder. The flow database at Re=100 is obtained by CFD software, i.e. FLUENT, with which POD bases are constructed by a snapshot method. Based on the POD bases, a low-dimensional model is established for solving the two-dimensional incompressible NS equations. The stability of the flow solution is evaluated by a POD-Chiba method in the way of the eigensystem analysis for the velocity disturbance. The linear stability analysis shows that the first Hopf bifurcation takes place at Re=46.9, which is in good agreement with available results by other high-order accurate stability analysis methods. However, the calculated amount of POD is little, which shows the availability and advantage of the POD method.


2014 ◽  
Vol 745 ◽  
pp. 647-681 ◽  
Author(s):  
Yee Chee See ◽  
Matthias Ihme

AbstractLocal linear stability analysis has been shown to provide valuable information about the response of jet diffusion flames to flow-field perturbations. However, this analysis commonly relies on several modelling assumptions about the mean flow prescription, the thermo-viscous-diffusive transport properties, and the complexity and representation of the chemical reaction mechanisms. In this work, the effects of these modelling assumptions on the stability behaviour of a jet diffusion flame are systematically investigated. A flamelet formulation is combined with linear stability theory to fully account for the effects of complex transport properties and the detailed reaction chemistry on the perturbation dynamics. The model is applied to a methane–air jet diffusion flame that was experimentally investigated by Füriet al.(Proc. Combust. Inst., vol. 29, 2002, pp. 1653–1661). Detailed simulations are performed to obtain mean flow quantities, about which the stability analysis is performed. Simulation results show that the growth rate of the inviscid instability mode is insensitive to the representation of the transport properties at low frequencies, and exhibits a stronger dependence on the mean flow representation. The effects of the complexity of the reaction chemistry on the stability behaviour are investigated in the context of an adiabatic jet flame configuration. Comparisons with a detailed chemical-kinetics model show that the use of a one-step chemistry representation in combination with a simplified viscous-diffusive transport model can affect the mean flow representation and heat release location, thereby modifying the instability behaviour. This is attributed to the shift in the flame structure predicted by the one-step chemistry model, and is further exacerbated by the representation of the transport properties. A pinch-point analysis is performed to investigate the stability behaviour; it is shown that the shear-layer instability is convectively unstable, while the outer buoyancy-driven instability mode transitions from absolutely to convectively unstable in the nozzle near field, and this transition point is dependent on the Froude number.


2020 ◽  
Vol 6 (1) ◽  
pp. 63-74
Author(s):  
Mark Schlutow ◽  
Georg S. Voelker

Abstract We investigate strongly nonlinear stationary gravity waves which experience refraction due to a thin vertical shear layer of horizontal background wind. The velocity amplitude of the waves is of the same order of magnitude as the background flow and hence the self-induced mean flow alters the modulation properties to leading order. In this theoretical study, we show that the stability of such a refracted wave depends on the classical modulation stability criterion for each individual layer, above and below the shearing. Additionally, the stability is conditioned by novel instability criteria providing bounds on the mean-flow horizontal wind and the amplitude of the wave. A necessary condition for instability is that the mean-flow horizontal wind in the upper layer is stronger than the wind in the lower layer.


2008 ◽  
Vol 3 (3) ◽  
pp. 34-38
Author(s):  
Sergey A. Gaponov ◽  
Yuri G. Yermolaev ◽  
Aleksandr D. Kosinov ◽  
Nikolay V. Semionov ◽  
Boris V. Smorodsky

Theoretical and an experimental research results of the disturbances development in a swept wing boundary layer are presented at Mach number М = 2. In experiments development of natural and small amplitude controllable disturbances downstream was studied. Experiments were carried out on a swept wing model with a lenticular profile at a zero attack angle. The swept angle of a leading edge was 40°. Wave parameters of moving disturbances were determined. In frames of the linear theory and an approach of the local self-similar mean flow the stability of a compressible three-dimensional boundary layer is studied. Good agreement of the theory with experimental results for transversal scales of unstable vertices of the secondary flow was obtained. However the calculated amplification rates differ from measured values considerably. This disagreement is explained by the nonlinear processes observed in experiment


2005 ◽  
Vol 4 (1-2) ◽  
pp. 37-47
Author(s):  
Jean-Philippe Brazier ◽  
Frédéric Moens ◽  
Philippe Bardoux

The flap side edge vortex is suspected to contribute to aerodynamic noise generation. Using a temporal stability analysis, Khorrami and Singer have shown that unstable modes could exist in this vortex. Due to the convective nature of this instability, a spatial analysis is more suitable. This is the subject of the present work. The mean flow past a 2D wing with a half-span flap has been computed with a steady 3D Navier-Stokes code. Then, local linear stability calculations are performed in several planes perpendicular to the vortex axis. The vortex is assumed axisymmetric and modelled with Batchelor's analytical vortex. Using Gaster's relation, the spatial amplification rate is calculated, giving by integration the relative amplitude of the fluctuations. Some low-frequency fluctuations are seen to be preferentially amplified by the vortex, but the amplifications remain small, so that this mechanism alone should not produce important noise in this particular configuration, where the flap deflection angle is moderate.


Author(s):  
Thomas L. Kaiser ◽  
Thierry Poinsot ◽  
Kilian Oberleithner

The hydrodynamic instability in an industrial, two-staged, counter-rotative, swirled injector of highly complex geometry is under investigation. Large eddy simulations show that the complicated and strongly nonparallel flow field in the injector is superimposed by a strong precessing vortex core. Mean flow fields of large eddy simulations, validated by experimental particle image velocimetry measurements are used as input for both local and global linear stability analysis. It is shown that the origin of the instability is located at the exit plane of the primary injector. Mode shapes of both global and local linear stability analysis are compared to a dynamic mode decomposition based on large eddy simulation snapshots, showing good agreement. The estimated frequencies for the instability are in good agreement with both the experiment and the simulation. Furthermore, the adjoint mode shapes retrieved by the global approach are used to find the best location for periodic forcing in order to control the precessing vortex core.


1991 ◽  
Vol 224 ◽  
pp. 159-175 ◽  
Author(s):  
T. L. Jackson ◽  
C. E. Grosch

We report the results of a comprehensive comparative study of the inviscid spatial stability of a parallel compressible mixing layer using various models for the mean flow. The models are (i) the hyperbolic tangent profile for the mean speed and the Crocco relation for the mean temperature, with the Chapman viscosity–temperature relation and a Prandtl number of one; (ii) the Lock profile for the mean speed and the Crocco relation for the mean temperature, with the Chapman viscosity-temperature relation and a Prandtl number of one; and (iii) the similarity solution for the coupled velocity and temperature equations using the Sutherland viscosity–temperature relation and arbitrary but constant Prandtl number. The purpose of this study was to determine the sensitivity of the stability characteristics of the compressible mixing layer to the assumed thermodynamic properties of the fluid. It is shown that the qualitative features of the stability characteristics are quite similar for all models but that there are quantitative differences resulting from the difference in the thermodynamic models. In particular, we show that the stability characteristics are sensitive to the value of the Prandtl number and to a particular value of the temperature ratio across the mixing layer.


Sign in / Sign up

Export Citation Format

Share Document