Contributions of inwardly rectifying K + currents to repolarization assessed using mathematical models of human ventricular myocytes

Author(s):  
Martin Fink ◽  
Wayne R Giles ◽  
Denis Noble

Repolarization of the action potential (AP) in cardiac muscle is a major determinant of refractoriness and excitability, and can also strongly modulate excitation–contraction coupling. In clinical cardiac electrophysiology, the Q-T interval, and hence action potential duration, is both an essential marker of normal function and an indicator of risk for arrhythmic events. It is now well known that the termination of the plateau phase of the AP and the repolarization waveform involve a complex interaction of transmembrane ionic currents. These include a slowly inactivating Na + current, inactivating Ca 2+ current, the decline of an electrogenic current due to Na + /Ca 2+ exchange and activation of three or four different K + currents. At present, many of the quantitative aspects of this important physiological and pathophysiological process remain incompletely understood. Recently, three mathematical models of the membrane AP in human ventricle myocyte have been developed and made available on the Internet. In this study, we have implemented these models for the purpose of comparing the K + currents, which are responsible for terminating the plateau phase of the AP and generating its repolarization. In this paper, our emphasis is on the two highly nonlinear inwardly rectifying potassium currents, and . A more general goal is to obtain improved understanding of the ionic mechanisms, which underlie all-or-none repolarization and the parameter denoted ‘repolarization reserve’ in the human ventricle. Further, insights into these fundamental variables can be expected to provide a more rational basis for clinical assessment of the Q-T and Q-T C intervals, and hence provide insights into some of the very substantial efforts in safety pharmacology, which are based on these parameters.

2007 ◽  
Vol 292 (1) ◽  
pp. H43-H55 ◽  
Author(s):  
Elizabeth M. Cherry ◽  
Flavio H. Fenton

The extensive development of detailed mathematical models of cardiac myocyte electrophysiology in recent years has led to a proliferation of models, including many that model the same animal species and specific region of the heart and thus would be expected to have similar properties. In this paper we review and compare two recently developed mathematical models of the electrophysiology of canine ventricular myocytes. To clarify their similarities and differences, we also present studies using them in a range of preparations from single cells to two-dimensional tissue. The models are compared with each other and with new and previously published experimental results in terms of a number of their properties, including action potential morphologies; transmembrane currents during normal heart rates and during alternans; alternans onsets, magnitudes, and cessations; and reentry dynamics of spiral waves. Action potential applets and spiral wave movies for the two canine ventricular models are available online as supplemental material. We find a number of differences between the models, including their rate dependence, alternans dynamics, and reentry stability, and a number of differences compared with experiments. Differences between models of the same species and region of the heart are not unique to these canine models. Similar differences can be found in the behavior of two models of human ventricular myocytes and of human atrial myocytes. We provide several possible explanations for the differences observed in models of the same species and region of the heart and discuss the implications for the applicability of models in addressing questions of mechanism in cardiac electrophysiology.


1988 ◽  
Vol 254 (6) ◽  
pp. H1157-H1166 ◽  
Author(s):  
J. A. Wasserstrom ◽  
J. J. Salata

We studied the effects of tetrodotoxin (TTX) and lidocaine on transmembrane action potentials and ionic currents in dog isolated ventricular myocytes. TTX (0.1-1 x 10(-5) M) and lidocaine (0.5-2 x 10(-5) M) decreased action potential duration, but only TTX decreased the maximum rate of depolarization (Vmax). Both TTX (1-2 x 10(-5) M) and lidocaine (2-5 x 10(-5) M) blocked a slowly inactivating toward current in the plateau voltage range. The voltage- and time-dependent characteristics of this current are virtually identical to those described in Purkinje fibers for the slowly inactivating inward Na+ current. In addition, TTX abolished the outward shift in net current at plateau potentials caused by lidocaine alone. Lidocaine had no detectable effect on the slow inward Ca2+ current and the inward K+ current rectifier, Ia. Our results indicate that 1) there is a slowly inactivating inward Na+ current in ventricular cells similar in time, voltage, and TTX sensitivity to that described in Purkinje fibers; 2) both TTX and lidocaine shorten ventricular action potentials by reducing this slowly inactivating Na+ current; 3) lidocaine has no additional actions on other ionic currents that contribute to its ability to abbreviate ventricular action potentials; and 4) although both agents shorten the action potential by the same mechanism, only TTX reduces Vmax. This last point suggests that TTX produces tonic block of Na+ current, whereas lidocaine may produce state-dependent Na+ channel block, namely, blockade of Na+ current only after Na+ channels have already been opened (inactivated-state block).


2007 ◽  
Vol 292 (1) ◽  
pp. R388-R395 ◽  
Author(s):  
Cristina E. Molina ◽  
Hans Gesser ◽  
Anna Llach ◽  
Lluis Tort ◽  
Leif Hove-Madsen

Application of the current-clamp technique in rainbow trout atrial myocytes has yielded resting membrane potentials that are incompatible with normal atrial function. To investigate this paradox, we recorded the whole membrane current ( Im) and compared membrane potentials recorded in isolated cardiac myocytes and multicellular preparations. Atrial tissue and ventricular myocytes had stable resting potentials of −87 ± 2 mV and −83.9 ± 0.4 mV, respectively. In contrast, 50 out of 59 atrial myocytes had unstable depolarized membrane potentials that were sensitive to the holding current. We hypothesized that this is at least partly due to a small slope conductance of Im around the resting membrane potential in atrial myocytes. In accordance with this hypothesis, the slope conductance of Im was about sevenfold smaller in atrial than in ventricular myocytes. Interestingly, ACh increased Im at −120 mV from 4.3 pA/pF to 27 pA/pF with an EC50 of 45 nM in atrial myocytes. Moreover, 3 nM ACh increased the slope conductance of Im fourfold, shifted its reversal potential from −78 ± 3 to −84 ± 3 mV, and stabilized the resting membrane potential at −92 ± 4 mV. ACh also shortened the action potential in both atrial myocytes and tissue, and this effect was antagonized by atropine. When applied alone, atropine prolonged the action potential in atrial tissue but had no effect on membrane potential, action potential, or Im in isolated atrial myocytes. This suggests that ACh-mediated activation of an inwardly rectifying K+ current can modulate the membrane potential in the trout atrial myocytes and stabilize the resting membrane potential.


2000 ◽  
Vol 278 (2) ◽  
pp. E302-E307 ◽  
Author(s):  
Zhuo-Qian Sun ◽  
Kaie Ojamaa ◽  
William A. Coetzee ◽  
Michael Artman ◽  
Irwin Klein

Thyroid hormones play an important role in cardiac electrophysiology through both genomic and nongenomic mechanisms of action. The effects of triiodothyronine (T3) on the electrophysiological properties of ventricular myocytes isolated from euthyroid and hypothyroid rats were studied using whole cell patch clamp techniques. Hypothyroid ventricular myocytes showed significantly prolonged action potential duration (APD90) compared with euthyroid myocytes, APD90 of 151 ± 5 vs. 51 ± 8 ms, respectively. Treatment of hypothyroid ventricular myocytes with T3 (0.1 μM) for 5 min significantly shortened APD by 24% to 115 ± 10 ms. T3 similarly shortened APD in euthyroid ventricular myocytes, but only in the presence of 4-aminopyridine (4-AP), an inhibitor of the transient outward current ( I to), which prolonged the APD by threefold. Transient outward current ( I to) was not affected by the acute application of T3 to either euthyroid or hypothyroid myocytes; however, I to density was significantly reduced in hypothyroid compared with euthyroid ventricular myocytes.


1998 ◽  
Vol 275 (6) ◽  
pp. H2291-H2299 ◽  
Author(s):  
Karen L. MacDonell ◽  
David L. Severson ◽  
Wayne R. Giles

Sphingosine 1-phosphate (S-1- P) is a bioactive sphingolipid that is released from activated platelets. Extracellular S-1- P augments an inwardly rectifying potassium conductance in cultured atrial preparations, but the electrophysiological effects of this compound in the ventricle are unknown. The electrophysiological effects of S-1- P were examined in single myocytes from rat ventricular muscle. Action potential waveforms and underlying ionic currents in the presence and absence of 3 μM S-1- P (1–6 min) were recorded. S-1- P increased the minimum stimulus current needed to elicit an action potential by ∼100 pA. Pertussis toxin or preexposure to S-1- P did not alter this effect. The action potential waveform was unchanged by S-1- P. The inward sodium current ( I Na) was examined in a range of membrane potentials just negative to the potential for firing an action potential. S-1- P reversibly inhibited peak I Na by ∼50 pA, whereas the inward rectifier potassium current was not significantly changed. The results of this study suggest that S-1- P inhibits rat ventricular excitability by reducing I Na.


2015 ◽  
Vol 93 (9) ◽  
pp. 803-810 ◽  
Author(s):  
Norbert Nagy ◽  
Tamás Szél ◽  
Norbert Jost ◽  
András Tóth ◽  
Julius Gy. Papp ◽  
...  

Data obtained from canine cardiac electrophysiology studies are often extrapolated to the human heart. However, it has been previously demonstrated that because of the lower density of its K+ currents, the human ventricular action potential has a less extensive repolarization reserve. Since the relevance of canine data to the human heart has not yet been fully clarified, the aim of the present study was to determine for the first time the action potentials of undiseased human Purkinje fibres (PFs) and to compare them directly with those of dog PFs. All measurements were performed at 37 °C using the conventional microelectrode technique. At a stimulation rate of 1 Hz, the plateau potential of human PFs is more positive (8.0 ± 1.8 vs 8.6 ± 3.4 mV, n = 7), while the amplitude of the spike is less pronounced. The maximal rate of depolarization is significantly lower in human PKs than in canine PFs (406.7 ± 62 vs 643 ± 36 V/s, respectively, n = 7). We assume that the appreciable difference in the protein expression profiles of the 2 species may underlie these important disparities. Therefore, caution is advised when canine PF data are extrapolated to humans, and further experiments are required to investigate the characteristics of human PF repolarization and its possible role in arrhythmogenesis.


2018 ◽  
Author(s):  
Xiaodong Huang ◽  
Zhen Song ◽  
Zhilin Qu

AbstractEarly afterdepolarizations (EADs) are spontaneous depolarizations during the repolarization phase of an action potential in cardiac myocytes. It is widely known that EADs are promoted by increasing inward currents and/or decreasing outward currents, a condition called reduced repolarization reserve. Recent studies based on bifurcation theories show that EADs are caused by a dual Hopf-homoclinic bifurcation, bringing in further mechanistic insights into the genesis and dynamics of EADs. In this study, we investigated the EAD properties, such as the EAD amplitude, the inter-EAD interval, and the latency of the first EAD, and their major determinants. We first made predictions based on the bifurcation theory and then validated them in physiologically more detailed action potential models. These properties were investigated by varying one parameter at a time or using parameter sets randomly drawn from assigned intervals. The theoretical and simulation results were compared with experimental data from the literature. Our major findings are that the EAD amplitude and takeoff potential exhibit a negative linear correlation; the inter-EAD interval is insensitive to the maximum ionic current conductance but mainly determined by the kinetics of ICa,L and the dual Hopf-homoclinic bifurcation; and both inter-EAD interval and latency vary largely from model to model. Most of the model results generally agree with experimental observations in isolated ventricular myocytes. However, a major discrepancy between modeling results and experimental observations is that the inter-EAD intervals observed in experiments are mainly between 200 and 500 ms, irrespective of species, while those of the mathematical models exhibit a much wider range with some models exhibiting inter-EAD intervals less than 100 ms. Our simulations show that the cause of this discrepancy is likely due to the difference in ICa,L recovery properties in different mathematical models, which needs to be addressed in future action potential model development.Author summaryEarly afterdepolarizations (EADs) are abnormal depolarizations during the plateau phase of action potential in cardiac myocytes, arising from a dual Hopf-homoclinic bifurcation. The same bifurcations are also responsible for certain types of bursting behaviors in other cell types, such as beta cells and neuronal cells. EADs are known to play important role in the genesis of lethal arrhythmias and have been widely studied in both experiments and computer models. However, a detailed comparison between the properties of EADs observed in experiments and those from mathematical models have not been carried out. In this study, we performed theoretical analyses and computer simulations of different ventricular action potential models as well as different species to investigate the properties of EADs and compared these properties to those observed in experiments. While the EAD properties in the action potential models capture many of the EAD properties seen in experiments, the inter-EAD intervals in the computer models differ a lot from model to model, and some of them show very large discrepancy with those observed in experiments. This discrepancy needs to be addressed in future cardiac action potential model development.


2021 ◽  
Vol 118 (31) ◽  
pp. e2108484118
Author(s):  
Bence Hegyi ◽  
Rafael Shimkunas ◽  
Zhong Jian ◽  
Leighton T. Izu ◽  
Donald M. Bers ◽  
...  

The heart pumps blood against the mechanical afterload from arterial resistance, and increased afterload may alter cardiac electrophysiology and contribute to life-threatening arrhythmias. However, the cellular and molecular mechanisms underlying mechanoelectric coupling in cardiomyocytes remain unclear. We developed an innovative patch-clamp-in-gel technology to embed cardiomyocytes in a three-dimensional (3D) viscoelastic hydrogel that imposes an afterload during regular myocyte contraction. Here, we investigated how afterload affects action potentials, ionic currents, intracellular Ca2+ transients, and cell contraction of adult rabbit ventricular cardiomyocytes. We found that afterload prolonged action potential duration (APD), increased transient outward K+ current, decreased inward rectifier K+ current, and increased L-type Ca2+ current. Increased Ca2+ entry caused enhanced Ca2+ transients and contractility. Moreover, elevated afterload led to discordant alternans in APD and Ca2+ transient. Ca2+ alternans persisted under action potential clamp, indicating that the alternans was Ca2+ dependent. Furthermore, all these afterload effects were significantly attenuated by inhibiting nitric oxide synthase 1 (NOS1). Taken together, our data reveal a mechano-chemo-electrotransduction (MCET) mechanism that acutely transduces afterload through NOS1–nitric oxide signaling to modulate the action potential, Ca2+ transient, and contractility. The MCET pathway provides a feedback loop in excitation–Ca2+ signaling–contraction coupling, enabling autoregulation of contractility in cardiomyocytes in response to afterload. This MCET mechanism is integral to the individual cardiomyocyte (and thus the heart) to intrinsically enhance its contractility in response to the load against which it has to do work. While this MCET is largely compensatory for physiological load changes, it may also increase susceptibility to arrhythmias under excessive pathological loading.


Sign in / Sign up

Export Citation Format

Share Document