scholarly journals Introduction. Cosmology meets condensed matter

Author(s):  
T.W.B Kibble ◽  
G.R Pickett

At first sight, low-temperature condensed-matter physics and early Universe cosmology seem worlds apart. Yet, in the last few years a remarkable synergy has developed between the two. It has emerged that, in terms of their mathematical description, there are surprisingly close parallels between them. This interplay has been the subject of a very successful European Science Foundation (ESF) programme entitled COSLAB (‘Cosmology in the Laboratory’) that ran from 2001 to 2006, itself built on an earlier ESF network called TOPDEF (‘Topological Defects: Non-equilibrium Field Theory in Particle Physics, Condensed Matter and Cosmology’). The articles presented in this issue of Philosophical Transactions A are based on talks given at the Royal Society Discussion Meeting ‘Cosmology meets condensed matter’, held on 28 and 29 January 2008. Many of the speakers had participated earlier in the COSLAB programme, but the strength of the field is illustrated by the presence also of quite a few new participants.

1997 ◽  
Vol 50 (4) ◽  
pp. 697 ◽  
Author(s):  
T. W. B. Kibble

Our present theories of particle physics and cosmology, taken together, suggest that very early in its history, the universe underwent a series of phase transitions, at which topological defects, similar to those formed in some condensed matter transitions, may have been created. Such defects, in particular cosmic strings, may survive long enough to have important observable effects in the universe today. Predicting these effects requires us to estimate the initial defect density and the way that defects subsequently evolve. Very similar problems arise in condensed matter systems, and recently it has been possible to test some of our ideas about the formation of defects using experiments with liquid helium-3 (in collaboration with the Low Temperature Laboratory in Helsinki). I shall review the present status of this theory.


Author(s):  
Subhaditya Bhattacharya ◽  
José Wudka

Standard Model (SM) of particle physics has achieved enormous success in describing the interactions among the known fundamental constituents of nature, yet it fails to describe phenomena for which there is very strong experimental evidence, such as the existence of dark matter, and which point to the existence of new physics not included in that model; beyond its existence, experimental data, however, have not provided clear indications as to the nature of that new physics. The effective field theory (EFT) approach, the subject of this review, is designed for this type of situations; it provides a consistent and unbiased framework within which to study new physics effects whose existence is expected but whose detailed nature is known very imperfectly. We will provide a description of this approach together with a discussion of some of its basic theoretical aspects. We then consider applications to high-energy phenomenology and conclude with a discussion of the application of EFT techniques to the study of dark matter physics and its possible interactions with the SM. In several of the applications we also briefly discuss specific models that are ultraviolet complete and may realize the effects described by the EFT.


2019 ◽  
Vol 6 (1) ◽  
pp. 171285 ◽  
Author(s):  
Yuri Vladimirovich Gusev

A new mathematical approach to condensed matter physics, based on the finite temperature field theory, was recently proposed. The field theory is a scale-free formalism; thus, it denies absolute values of thermodynamic temperature and uses dimensionless thermal variables, which are obtained with the group velocities of sound and the interatomic distance. This formalism was previously applied to the specific heat of condensed matter and predicted its fourth power of temperature behaviour at sufficiently low temperatures, which was tested by experimental data for diamond lattice materials. The range of temperatures with the quartic law varies for different materials; therefore, it is called the quasi-low temperature regime. The quasi-low temperature behaviour of specific heat is verified here with experimental data for the fcc lattice materials, silver chloride and lithium iodide. The conjecture that the fourth order behaviour is universal for all condensed matter systems has also supported the data for glassy matter: vitreous silica. This law is long known to hold for the bcc solid helium-4. The characteristic temperatures of the threshold of the quasi-low temperature regime are found for the studied materials. The scaling in the specific heat of condensed matter is expressed by the dimensionless parameter, which is explored with the data for several glasses. The explanation of the correlation of the ‘boson peak’ temperature with the shear velocity is proposed. The critique of the Debye theory of specific heat and the Born–von Karman model of the lattice dynamics is given.


2018 ◽  
Vol 4 (11) ◽  
pp. eaau7725 ◽  
Author(s):  
K. Sunami ◽  
T. Nishikawa ◽  
K. Miyagawa ◽  
S. Horiuchi ◽  
R. Kato ◽  
...  

Topological defects have been explored in different fields ranging from condensed matter physics and particle physics to cosmology. In condensed matter, strong coupling between charge, spin, and lattice degrees of freedom brings about emergent excitations with topological characteristics at low energies. One-dimensional (1D) systems with degenerate dimerization patterns are typical stages for the generation of topological defects, dubbed “solitons”; for instance, charged solitons are responsible for high electrical conductivity in doped trans-polyacetylene. Here, we provide evidence based on a nuclear magnetic resonance (NMR) study for mobile spin solitons deconfined from a strongly charge-lattice–coupled spin-singlet ferroelectric order in a quasi-1D organic charge-transfer complex. The NMR spectral shift and relaxation rate associated with static and dynamic spin susceptibilities indicate that the ferroelectric order is violated by dilute solitonic spin excitations, which were further demonstrated to move diffusively by the frequency dependence of the relaxation rate. The traveling solitons revealed here may promise the emergence of anomalous electrical and thermal transport.


2004 ◽  
Vol 19 (12) ◽  
pp. 1837-1861 ◽  
Author(s):  
RICHARD J. SZABO

This paper is a rudimentary introduction, geared at nonspecialists, to how noncommutative field theories arise in physics and their applications to string theory, particle physics and condensed matter systems.


The Copley Medal represents one of the oldest surviving honorary reward systems not only in the Royal Society but also in European science. After the first few years of its award it came increasingly to represent the recognition by the Society of the highest scientific distinction. Its history is, therefore, closely associated with the development of modern science, particularly in Britain. It is surprising that no one has attempted a history of the Copley Medal. Historians of the Royal Society deal with the subject only summarily, or sometimes there is an incidental mention of the medal in connection with a particular recipient. It seems, therefore, that it would be a worthwhile task to look at the foundation of the award and its subsequent history over a considerable period, and we have chosen to examine a time span of approximately a century. This study covers the period from the establishment of Sir Godfrey Copley’s legacy to the late 1830s, by which time various reform movements within the Society had begun to take effect. In fact the period chosen for review corresponds to the award of precisely 100 medals. Our research shows that, after a rather uncertain start over the first 25 years, the Copley Medal thereafter became established as a major award. In the early 19th century the Medal gained ever wider publicity by its award to several distinguished foreign scientists, so that by the end of our period it had become recognized as a real mark of international distinction.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 266
Author(s):  
Galina L. Klimchitskaya

This Special Issue presents a comprehensive picture of the Casimir effect as a multidisciplinary subject that plays an important role in diversified areas of physics ranging from quantum field theory, atomic physics and condensed matter physics to elementary particle physics, gravitation and cosmology [...]


2014 ◽  
Vol 29 (17) ◽  
pp. 1475001 ◽  
Author(s):  
Yu Shi

In 2012, Chen Ning Yang received a 90th birthday gift in the form of a black cube inscribed with his 13 most important contributions, which cover four major areas of physics: statistical mechanics, condensed matter physics, particle physics and field theory. We briefly describe these 13 contributions and make general comments about Yang's distinctive style as a trailblazing leader in research.


2017 ◽  
Vol 6 (10) ◽  
pp. 5518 ◽  
Author(s):  
Deepak Narang ◽  
Jeevan Singh Tityal ◽  
Amit Jain ◽  
Reena Kulshreshtra ◽  
Fatima Khan

Antibiotics are the most important medical inventions in human history and are the invaluable weapons to fight against various infectious diseases. Multi drug resistant microorganisms are becoming a serious issue and increasingly public health problem in present day scenario. Antibiotics are becoming less useful due to increasing bacterial resistance. Development of new and more powerful antibiotics leading to drastic pathogens response by developing resistance to the point where the most powerful drugs in our arsenal are no longer effective against them. New strategies for the management of bacterial diseases are urgently needed and nanomaterials can be a very promising approach. Nanobiotics uses nano-sized tools for the successful management bacterial diseases and to gain increased understanding of the complex underlying patho-physiology of disease. (European Science Foundation. Forward Look Nanomedicine: An EMRC Consensus Opinion 2005. Available online: http://www.esf.org (accessed on 15 July 2017). The application of nanotechnologies to medicine, or nanomedicine, which has already demonstrated its tremendous impact on the pharmaceutical and biotechnology industries, is rapidly becoming a major driving force behind ongoing changes in the antimicrobial field. Present review providing important insights on nanobiotics, and their preparation, mechanism of action, as well as perspectives on the opportunities and challenges in nanobiotics.


This volume contains lectures delivered at the Les Houches Summer School ‘Integrability: from statistical systems to gauge theory’ held in June 2016. The School was focussed on applications of integrability to supersymmetric gauge and string theory, a subject of high and increasing interest in the mathematical and theoretical physics communities over the past decade. Relevant background material was also covered, with lecture series introducing the main concepts and techniques relevant to modern approaches to integrability, conformal field theory, scattering amplitudes, and gauge/string duality. The book will be useful not only to those working directly on integrablility in string and guage theories, but also to researchers in related areas of condensed matter physics and statistical mechanics.


Sign in / Sign up

Export Citation Format

Share Document