scholarly journals Some peculiarities of turbulent mixing growth and perturbations at hydrodynamic instabilities

Author(s):  
N. V. Nevmerzhitskiy

The author presents a review of some experimental works devoted to the research of evolution of large-scale perturbations and turbulent mixing (TM) in liquid and gaseous media during the growth of hydrodynamic instabilities. In particular, it is shown that growth of perturbations and TM in gases is sensitive to the Mach number of shock wave; character of gas front penetration into liquid is not changed as the Reynolds number of flow increases from 5×10 5 to 10 7 ; and change of the Atwood number sign from positive to negative causes stopping of gas front penetration into liquid, but mixing zone width is expanded under inertia.

1965 ◽  
Vol 16 (4) ◽  
pp. 377-387
Author(s):  
J. M. Forde

SummaryAn integral part of the study of supersonic combustion is the investigation of supersonic turbulent mixing of dissimilar fluids. Experimental results obtained in the course of investigating the turbulent mixing zone between supersonic streams of CO3 and air are presented. Good correlation between observation and available theories has been obtained in terms of the parameter ξ=σy/x. The correlating parameter σ defines the spreading rate of the mixing zone. The available theories, though not developed for these specific conditions, are shown to be applicable to the turbulent mixing of supersonic streams.The correlating parameter σ was determined for three different combinations of internal and external flow Mach numbers. The values found for σ were 18, 16·3, 15·3 for constant external Mach number 1·62 and internal Mach number 1·62, 1·53, 1·47 respectively. The magnitudes of σ showed the expected trend, that is the higher value implies the least divergence of the mixing boundaries.The reasonable agreement with experiment and the simplicity of application of the momentum integral form of solution would appear to favour the use of this approach for the theoretical prediction of the mixing conditions.


1990 ◽  
Vol 26 (3) ◽  
pp. 315-320 ◽  
Author(s):  
E. E. Meshkov ◽  
V. V. Nikiforov ◽  
A. I. Tolshmyakov

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Vincent Gleize ◽  
Michel Costes ◽  
Ivan Mary

Purpose The purpose of this paper is to study turbulent flow separation at the airfoil trailing edge. This work aims to improve the knowledge of stall phenomenon by creating a QDNS database for the NACA412 airfoil. Design/methodology/approach Quasi-DNS simulations of the NACA 4412 airfoil in pre-stall conditions have been completed. The Reynolds number based on airfoil chord and freestream velocity is equal to 0.35 million, and the freestream Mach number to 0.117. Transition is triggered on both surfaces for avoiding the occurrence of laminar separation bubbles and to ensure turbulent mixing in the wake. Four incidences have been considered, 5, 8 10 and 11 degrees. Findings The results obtained show a reasonably good correlation of the present simulations with classical MSES airfoil simulations and with RANS computations, both in terms of pressure and skin-friction distribution, with an earlier and more extended flow separation in the QDNS. The database thus generated will be deeply analysed and enriched for larger incidences in the future. Originality/value No experimental or HPC numerical database at reasonable Reynolds number exists in the literature. The current work is the first step in that direction.


1997 ◽  
Vol 349 ◽  
pp. 67-94 ◽  
Author(s):  
G. JOURDAN ◽  
L. HOUAS ◽  
J.-F. HAAS ◽  
G. BEN-DOR

A simultaneous three-directional laser absorption technique for the study of a shock-induced Richtmyer–Meshkov instability mixing zone is reported. It is an improvement of a CO2 laser absorption technique, using three detectors during the same run, through three different directions of the test section, for the simultaneous thickness measurement of the mixing zone near the corner, near the wall and at the centre of a square-cross-section shock tube. The three-dimensional mean front and rear shapes of the mixing zone, its thickness and volume are deduced from the experimental measurements. The cases when the shock wave passes from a heavy gas to a light one, from one gas to another of similar densities and from a light gas to a heavy one, are investigated before and after the mixing zone compression by the reflected shock, for different incident shock wave Mach numbers. It is shown that the mixing zone is strongly deformed by the wall boundary layer when it becomes turbulent. Consequently, the thickness of the mixing zone is not constant along the shock tube cross-section, and the measurement of the mean volume of the mixing zone appears to be more appropriate than its mean thickness at the centre of the shock tube. The influence of the incident shock wave Mach number is also studied. When the Atwood number tends to zero, we observe a limit-like regime and the thickness, or the volume, of the mixing zone no longer varies with the incident shock wave Mach number. Furthermore, a series of experiments undertaken with an Atwood number close to zero enabled us to define a membrane-induced minimum mixing thickness, L0, depending on the initial configuration of the experiments. From the experimental data, a hypothesis about the mixing zone thickness evolution law with time is deduced on the basis of L0. The results are found to follow two very different laws depending on whether they are considered before or after the establishment of the plenary turbulent regime. However, no general trend can be determined to describe the entire phenomenon, i.e. from the initial conditions until the turbulent stage.


2014 ◽  
Vol 743 ◽  
pp. 554-584 ◽  
Author(s):  
J. O’Brien ◽  
J. Urzay ◽  
M. Ihme ◽  
P. Moin ◽  
A. Saghafian

AbstractThis study addresses the dynamics of backscatter of kinetic energy in the context of large-eddy simulations (LES) of high-speed turbulent reacting flows. A priori analyses of direct numerical simulations (DNS) of reacting and inert supersonic, time-developing, hydrogen–air turbulent mixing layers with complex chemistry and multicomponent diffusion are conducted here in order to examine the effects of compressibility and combustion on subgrid-scale (SGS) backscatter of kinetic energy. The main characteristics of the aerothermochemical field in the mixing layer are outlined. A selfsimilar period is identified in which some of the turbulent quantities grow in a quasi-linear manner. A differential filter is applied to the DNS flow field to extract filtered quantities of relevance for the large-scale kinetic-energy budget. Spatiotemporal analyses of the flow-field statistics in the selfsimilar regime are performed, which reveal the presence of considerable amounts of SGS backscatter. The dilatation field becomes spatially intermittent as a result of the high-speed compressibility effect. In addition, the large-scale pressure-dilatation work is observed to be an essential mechanism for the local conversion of thermal and kinetic energies. A joint probability density function (PDF) of SGS dissipation and large-scale pressure-dilatation work is provided, which shows that backscatter occurs primarily in regions undergoing volumetric expansion; this implies the existence of an underlying physical mechanism that enhances the reverse energy cascade. Furthermore, effects of SGS backscatter on the Boussinesq eddy viscosity are studied, and a regime diagram demonstrating the relationship between the different energy-conversion modes and the sign of the eddy viscosity is provided along with a detailed budget of the volume fraction in each mode. A joint PDF of SGS dissipation and SGS dynamic-pressure dilatation work is calculated, which shows that high-speed compressibility effects lead to a decorrelation between SGS backscatter and negative eddy viscosities, which increases for increasingly large values of the SGS Mach number and filter width. Finally, it is found that the combustion dynamics have a marginal impact on the backscatter and flow-dilatation distributions, which are mainly dominated by the high-Mach-number effects.


2019 ◽  
Vol 60 (12) ◽  
Author(s):  
A. Coschignano ◽  
N. Atkins ◽  
H. Babinsky ◽  
J. Serna

Abstract The interaction between a normal shock wave and a boundary layer is investigated over a curved surface for a Reynolds number range, based on boundary-layer growing length x, of $$0.44\times 10^6\le \text {Re}_x\le 1.09\times 10^6$$0.44×106≤Rex≤1.09×106. The upstream boundary layer develops around the leading edge of the model before encountering a $$M$$M$$\sim $$∼1.4 normal shock. This is followed by adverse pressure gradients. The shock position and strength are kept constant as $$\text {Re}$$Re is progressively varied. Infra-red thermography is used to determine the nature of the upstream boundary layer. Across the $$\text {Re}$$Re range, this is observed to vary from fully laminar to fully turbulent across the entire span. Regardless of the boundary-layer state, the interaction remains benign in nature, without large scale shock-induced separation or unsteadiness. Schlieren images show a pronounced oblique wave developing upstream of the main shock for the laminar cases, this is believed to correspond to the separation and subsequent transition of the laminar shear layer. Downstream of the shock, in the presence of adverse pressure gradients, the boundary-layer growth rate is inversely proportional to $$\text {Re}$$Re. Nonetheless, across the entire range of inflow conditions the boundary layer recovers quickly to a healthy turbulent boundary layer. This suggests the upstream boundary-layer state, and its transition mechanism, to have little effect on the outcome of its interaction with a normal shock wave. Graphic abstract


2019 ◽  
Vol 871 ◽  
pp. 595-635 ◽  
Author(s):  
Mohammad Mohaghar ◽  
John Carter ◽  
Gokul Pathikonda ◽  
Devesh Ranjan

The effects of incident shock strength on the mixing transition in the Richtmyer–Meshkov instability (RMI) are experimentally investigated using simultaneous density–velocity measurements. This effort uses a shock with an incident Mach number of 1.9, in concert with previous work at Mach 1.55 (Mohaghar et al., J. Fluid Mech., vol. 831, 2017 pp. 779–825) where each case is followed by a reshock wave. Single- and multi-mode interfaces are used to quantify the effect of initial conditions on the evolution of the RMI. The interface between light and heavy gases ($\text{N}_{2}/\text{CO}_{2}$, Atwood number, $A\approx 0.22$; amplitude to wavelength ratio of 0.088) is created in an inclined shock tube at $80^{\circ }$ relative to the horizontal, resulting in a predominantly single-mode perturbation. To investigate the effects of initial perturbations on the mixing transition, a multi-mode inclined interface is also created via shear and buoyancy superposed on the dominant inclined perturbation. The evolution of mixing is investigated via the density fields by computing mixed mass and mixed-mass thickness, along with mixing width, mixedness and the density self-correlation (DSC). It is shown that the amount of mixing is dependent on both initial conditions and incident shock Mach number. Evolution of the density self-correlation is discussed and the relative importance of different DSC terms is shown through fields and spanwise-averaged profiles. The localized distribution of vorticity and the development of roll-up features in the flow are studied through the evolution of interface wrinkling and length of the interface edge, which indicate that the vorticity concentration shows a strong dependence on the Mach number. The contribution of different terms in the Favre-averaged Reynolds stress is shown, and while the mean density-velocity fluctuation correlation term, $\langle \unicode[STIX]{x1D70C}\rangle \langle u_{i}^{\prime }u_{j}^{\prime }\rangle$, is dominant, a high dependency on the initial condition and reshock is observed for the turbulent mass-flux term. Mixing transition is analysed through two criteria: the Reynolds number (Dimotakis, J. Fluid Mech., vol. 409, 2000, pp. 69–98) for mixing transition and Zhou (Phys. Plasmas, vol. 14 (8), 2007, 082701 for minimum state) and the time-dependent length scales (Robey et al., Phys. Plasmas, vol. 10 (3), 2003, 614622; Zhou et al., Phys. Rev. E, vol. 67 (5), 2003, 056305). The Reynolds number threshold is surpassed in all cases after reshock. In addition, the Reynolds number is around the threshold range for the multi-mode, high Mach number case ($M\sim 1.9$) before reshock. However, the time-dependent length-scale threshold is surpassed by all cases only at the latest time after reshock, while all cases at early times after reshock and the high Mach number case at the latest time before reshock fall around the threshold. The scaling analysis of the turbulent kinetic energy spectra after reshock at the latest time, at which mixing transition analysis suggests that an inertial range has formed, indicates power scaling of $-1.8\pm 0.05$ for the low Mach number case and $-2.1\pm 0.1$ for the higher Mach number case. This could possibly be related to the high anisotropy observed in this flow resulting from strong, large-scale streamwise fluctuations produced by large-scale shear.


2017 ◽  
Vol 139 (9) ◽  
Author(s):  
J. Griffond ◽  
J.-F. Haas ◽  
D. Souffland ◽  
G. Bouzgarrou ◽  
Y. Bury ◽  
...  

Shock-induced mixing experiments have been conducted in a vertical shock tube of 130 mm square cross section located at ISAE. A shock wave traveling at Mach 1.2 in air hits a geometrically disturbed interface separating air and SF6, a gas five times heavier than air, filling a chamber of length L up to the end of the shock tube. Both gases are initially separated by a 0.5 μm thick nitrocellulose membrane maintained parallel to the shock front by two wire grids: an upper one with mesh spacing equal to either ms = 1.8 mm or 12.1 mm, and a lower one with a mesh spacing equal to ml = 1 mm. Weak dependence of the mixing zone growth after reshock (interaction of the mixing zone with the shock wave reflected from the top end of the test chamber) with respect to L and ms is observed despite a clear imprint of the mesh spacing ms in the schlieren images. Numerical simulations representative of these configurations are conducted: the simulations successfully replicate the experimentally observed weak dependence on L, but are unable to show the experimentally observed independence with respect to ms while matching the morphological features of the schlieren pictures.


Sign in / Sign up

Export Citation Format

Share Document