scholarly journals Metasurface transformation for surface wave control

Author(s):  
E. Martini ◽  
M. Mencagli ◽  
S. Maci

Metasurfaces (MTSs) constitute a class of thin metamaterials used for controlling plane waves and surface waves (SWs). At microwave frequencies, they are constituted by a metallic texture with elements of sub-wavelength size printed on thin grounded dielectric substrates. These structures support the propagation of SWs. By averaging the tangential fields, the MTSs can be characterized through homogenized isotropic or anisotropic boundary conditions, which can be described through a homogeneous equivalent impedance. This impedance can be spatially modulated by locally changing the size/orientation of the texture elements. This allows for a deformation of the SW wavefront which addresses the local wavevector along not-rectilinear paths. The effect of the MTS modulation can be analysed in the framework of transformation optics. This article reviews theory and implementation of this MTS transformation and shows some examples at microwave frequencies.

2020 ◽  
Vol 26 (21-22) ◽  
pp. 1980-1987
Author(s):  
Baljeet Singh ◽  
Baljinder Kaur

The propagation of Rayleigh type surface waves in a rotating elastic half-space of orthotropic type is studied under impedance boundary conditions. The secular equation is obtained explicitly using traditional methodology. A program in MATLAB software is developed to obtain the numerical values of the nondimensional speed of Rayleigh wave. The speed of Rayleigh wave is illustrated graphically against rotation rate, nondimensional material constants, and impedance boundary parameters.


This addition to a recent paper by Chadwick ( Proc. R. Soc. Lond . A 430, 213 (1990); hereafter referred to as part I) has been prompted mainly by the discovery of secluded supersonic surface waves propagating in configurations of transversely isotropic elastic media in which the reference plane is not a plane of material symmetry and coexisting with a subsonic surface wave. The occurrence of a supersonic surface wave travelling in a direction e 1 with speed v s implies that there are two homogeneous plane waves, with slowness vectors s i and s r such that s i . e 1 = S r . e 1 = v -1 s , which comprise the incident and reflected waves in a case of simple reflection at the traction-free boundary. Supersonic surface waves may therefore be found by searching within a suitably defined space of simple reflection, R . This is the approach which has led to the new results mentioned above and the principal conclusions of part I are re-examined here from the same point of view. It is found that, whereas the secluded supersonic surface waves in transversely isotropic media correspond to isolated points on a curvilinear projection of R which does not intersect the curve representing subsonic surface waves, the symmetric surface waves studied in part I define a curve which may lie partly inside and partly outside a projection of R in the form of a region, the interior points representing supersonic and the exterior points subsonic surface waves. This discussion is preceded by a simplification of the existence-uniqueness theorem proved in part I and followed by a reconsideration of the possibility that an inhomogeneous plane elastic wave can qualify as a surface wave. Such one-component surface waves do exist, but a symmetric surface wave necessarily contains two inhomogeneous plane waves.


The treatment of homogeneous plane waves given in part I provides the basis for the detailed study of the nature of surface-wave propagation in transversely isotropic elastic media presented in this paper. The investigation is made within the framework of the existence theorem of Barnett and Lothe and the developments underlying its proof. The paper begins with a survey of this essential theoretical background, outlining in particular the formulation of the secular equation for surface waves in the real form F(v) = 0, F(v) being a nonlinear combination of definite integrals involving the acoustical tensor Q (⋅) and the associated tensor R (⋅,⋅) introduced in part I. The calculation of F(v) for a transversely isotropic elastic material is next undertaken, first, in principle, for an arbitrary orientation of the axis of symmetry, then for the α and β configurations, shown in part I to contain all the exceptional transonic states. In the rest of the paper the determination of F(v) is completed, in closed form, for the α and β configurations and followed in each case by a discussion of the properties of F(v) and illustrative numerical results. This combination of analysis and computation affords a clear understanding of surface-wave behaviour in the exceptional configurations comprising, in the classification of part I, cases 1, 2 and 3. The findings for case 1 exhibit continuous transitions, within the α configurations, between subsonic and supersonic surface-wave propagation. Those for case 3 prove that there are discrete orientations of the axis for which no genuine surface wave can propagate and that this degeneracy typically has a marked influence on surface-wave properties in a sizeable sector of neighbouring β configurations. Neither effect appears in previous accounts of surface-wave propagation in anisotropic elastic media.


2012 ◽  
Vol E95-C (4) ◽  
pp. 717-724
Author(s):  
Michinari SHIMODA ◽  
Toyonori MATSUDA ◽  
Kazunori MATSUO ◽  
Yoshitada IYAMA

2021 ◽  
Vol 197 ◽  
pp. 106308
Author(s):  
Yijie Liu ◽  
Liang Jin ◽  
Hongfa Wang ◽  
Dongying Liu ◽  
Yingjing Liang

2020 ◽  
pp. 108128652096564
Author(s):  
Mriganka Shekhar Chaki ◽  
Victor A Eremeyev ◽  
Abhishek K Singh

In this work, the propagation behaviour of a surface wave in a micropolar elastic half-space with surface strain and kinetic energies localized at the surface and the propagation behaviour of an interfacial anti-plane wave between two micropolar elastic half-spaces with interfacial strain and kinetic energies localized at the interface have been studied. The Gurtin–Murdoch model has been adopted for surface and interfacial elasticity. Dispersion equations for both models have been obtained in algebraic form for two types of anti-plane wave, i.e. a Love-type wave and a new type of surface wave (due to micropolarity). The angular frequency and phase velocity of anti-plane waves have been analysed through a numerical study within cut-off frequencies. The obtained results may find suitable applications in thin film technology, non-destructive analysis or biomechanics, where the models discussed here may serve as theoretical frameworks for similar types of phenomena.


1971 ◽  
Vol 38 (4) ◽  
pp. 899-905 ◽  
Author(s):  
L. B. Freund

Three-dimensional wave propagation in an elastic half space is considered. The half space is traction free on half its boundary, while the remaining part of the boundary is free of shear traction and is constrained against normal displacement by a smooth, rigid barrier. A time-harmonic surface wave, traveling on the traction free part of the surface, is obliquely incident on the edge of the barrier. The amplitude and the phase of the resulting reflected surface wave are determined by means of Laplace transform methods and the Wiener-Hopf technique. Wave propagation in an elastic half space in contact with two rigid, smooth barriers is then considered. The barriers are arranged so that a strip on the surface of uniform width is traction free, which forms a wave guide for surface waves. Results of the surface wave reflection problem are then used to geometrically construct dispersion relations for the propagation of unattenuated guided surface waves in the guiding structure. The rate of decay of body wave disturbances, localized near the edges of the guide, is discussed.


Geophysics ◽  
2011 ◽  
Vol 76 (6) ◽  
pp. V115-V128 ◽  
Author(s):  
Ning Wu ◽  
Yue Li ◽  
Baojun Yang

To remove surface waves from seismic records while preserving other seismic events of interest, we introduced a transform and a filter based on recent developments in image processing. The transform can be seen as a weighted Radon transform, in particular along linear trajectories. The weights in the transform are data dependent and designed to introduce large amplitude differences between surface waves and other events such that surface waves could be separated by a simple amplitude threshold. This is a key property of the filter and distinguishes this approach from others, such as conventional ones that use information on moveout ranges to apply a mask in the transform domain. Initial experiments with synthetic records and field data have demonstrated that, with the appropriate parameters, the proposed trace transform filter performs better both in terms of surface wave attenuation and reflected signal preservation than the conventional methods. Further experiments on larger data sets are needed to fully assess the method.


2018 ◽  
Vol 35 (5) ◽  
pp. 1053-1075 ◽  
Author(s):  
Je-Yuan Hsu ◽  
Ren-Chieh Lien ◽  
Eric A. D’Asaro ◽  
Thomas B. Sanford

AbstractSeven subsurface Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats measured the voltage induced by the motional induction of seawater under Typhoon Fanapi in 2010. Measurements were processed to estimate high-frequency oceanic velocity variance associated with surface waves. Surface wave peak frequency fp and significant wave height Hs are estimated by a nonlinear least squares fitting to , assuming a broadband JONSWAP surface wave spectrum. The Hs is further corrected for the effects of float rotation, Earth’s geomagnetic field inclination, and surface wave propagation direction. The fp is 0.08–0.10 Hz, with the maximum fp of 0.10 Hz in the rear-left quadrant of Fanapi, which is ~0.02 Hz higher than in the rear-right quadrant. The Hs is 6–12 m, with the maximum in the rear sector of Fanapi. Comparing the estimated fp and Hs with those assuming a single dominant surface wave yields differences of more than 0.02 Hz and 4 m, respectively. The surface waves under Fanapi simulated in the WAVEWATCH III (ww3) model are used to assess and compare to float estimates. Differences in the surface wave spectra of JONSWAP and ww3 yield uncertainties of <5% outside Fanapi’s eyewall and >10% within the eyewall. The estimated fp is 10% less than the simulated before the passage of Fanapi’s eye and 20% less after eye passage. Most differences between Hs and simulated are <2 m except those in the rear-left quadrant of Fanapi, which are ~5 m. Surface wave estimates are important for guiding future model studies of tropical cyclone wave–ocean interactions.


Sign in / Sign up

Export Citation Format

Share Document