scholarly journals Meteorological responses in the atmospheric boundary layer over southern England to the deep partial eclipse of 20 March 2015

Author(s):  
Stephen Burt

A wide range of surface and near-surface meteorological observations were made at the University of Reading’s Atmospheric Observatory in central southern England (latitude 51.441° N, longitude 0.938° W, altitude 66 m above mean sea level) during the deep partial eclipse on the morning of 20 March 2015. Observations of temperature, humidity, radiation, wind speed and direction, and atmospheric pressure were made by computerized logging equipment at 1 Hz, supplemented by an automated cloud base recorder sampling at 1 min intervals and a high-resolution (approx. 10 m vertical interval) atmospheric sounding by radiosonde launched from the same location during the eclipse. Sources and details of each instrumental measurement are described briefly, followed by a summary of observed and derived measurements by meteorological parameter. Atmospheric boundary layer responses to the solar eclipse were muted owing to the heavily overcast conditions which prevailed at the observing location, but instrumental records of the event documented a large (approx. 80%) reduction in global solar radiation, a fall in air temperature of around 0.6°C, a decrease in cloud base height, and a slight increase in atmospheric stability during the eclipse. Changes in surface atmospheric moisture content and barometric pressure were largely insignificant during the event. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’.

2018 ◽  
Vol 18 (4) ◽  
pp. 2913-2928 ◽  
Author(s):  
Norbert Kalthoff ◽  
Fabienne Lohou ◽  
Barbara Brooks ◽  
Gbenga Jegede ◽  
Bianca Adler ◽  
...  

Abstract. A ground-based field campaign was conducted in southern West Africa from mid-June to the end of July 2016 within the framework of the Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa (DACCIWA) project. It aimed to provide a high-quality comprehensive data set for process studies, in particular of interactions between low-level clouds (LLCs) and boundary-layer conditions. In this region missing observations are still a major issue. During the campaign, extensive remote sensing and in situ measurements were conducted at three supersites: Kumasi (Ghana), Savè (Benin) and Ile-Ife (Nigeria). Daily radiosoundings were performed at 06:00 UTC, and 15 intensive observation periods (IOPs) were performed during which additional radiosondes were launched, and remotely piloted aerial systems were operated. Extended stratiform LLCs form frequently in southern West Africa during the nighttime and persist long into the following day. They affect the radiation budget and hence the evolution of the atmospheric boundary layer and regional climate. The relevant parameters and processes governing the formation and dissolution of the LLCs are still not fully understood. This paper gives an overview of the diurnal cycles of the energy-balance components, near-surface temperature, humidity, wind speed and direction as well as of the conditions (LLCs, low-level jet) in the boundary layer at the supersites and relates them to synoptic-scale conditions (monsoon layer, harmattan layer, African easterly jet, tropospheric stratification) in the DACCIWA operational area. The characteristics of LLCs vary considerably from day to day, including a few almost cloud-free nights. During cloudy nights we found large differences in the LLCs' formation and dissolution times as well as in the cloud-base height. The differences exist at individual sites and also between the sites. The synoptic conditions are characterized by a monsoon layer with south-westerly winds, on average about 1.9 km deep, and easterly winds above; the depth and strength of the monsoon flow show great day-to-day variability. Within the monsoon layer, a nocturnal low-level jet forms in approximately the same layer as the LLC. Its strength and duration is highly variable from night to night. This unique data set will allow us to test some new hypotheses about the processes involved in the development of LLCs and their interaction with the boundary layer and can also be used for model evaluation.


2011 ◽  
Vol 68 (10) ◽  
pp. 2344-2365 ◽  
Author(s):  
Bart Geerts ◽  
Qun Miao ◽  
Yang Yang

Abstract Airborne vertically pointing Doppler radar data collected in 10 winter storms over the Medicine Bow Range in Wyoming are used to examine the importance of boundary layer (BL) turbulence for orographic precipitation growth. In all 10 cases, the cloud-base temperature was below 0°C and the bulk Froude number was more than 1.0, implying little or no blocking of the flow by the mountain barrier. Seven of the 10 storms sampled were postfrontal, with weak static stability and relatively shallow cloud tops. Doppler vertical velocity transects depict an approximately 1-km-deep turbulent layer draped over the terrain, sometimes clearly distinct from the stratified flow in the free troposphere aloft, where vertical motion is largely controlled by gravity wave dynamics. Spectral analysis of near-surface Doppler vertical velocity data in terrain-following coordinates reveals an inertial subrange with decreasing power with height toward the BL top. The composite of radar data profiles from the 10 flights is analyzed in frequency-by-altitude diagrams, with altitude expressed above ground level. These diagrams indicate a wide range of vertical velocities in the BL, and rapid snow growth within the BL as air rises through the cloud base, especially when BL turbulence is more intense. This snow growth is concentrated on the windward side of mountains, above the terrain–cloud base intersection. The dominant snow growth mechanism in the BL (i.e., by accretion or vapor deposition) cannot be established because of restrictions in aircraft flight level over complex terrain. Snow aggregation may have contributed to the observed rapid increase in reflectivity in the BL along the windward slope.


2009 ◽  
Vol 22 (6) ◽  
pp. 1360-1374 ◽  
Author(s):  
Youichi Tanimoto ◽  
Shang-Ping Xie ◽  
Kohei Kai ◽  
Hideki Okajima ◽  
Hiroki Tokinaga ◽  
...  

Abstract The baiu and Kuroshio Extension (KE) fronts, both zonally oriented and nearly collocated east of Japan, are the dominant summertime features of the atmosphere and ocean, respectively, over the midlatitude northwest Pacific. An atmospheric sounding campaign was conducted on board the R/V Roger Revelle during the 2005 summer. Transects of soundings across the KE front are analyzed to study its effects on the atmosphere, along with continuous surface meteorological and ceilometer cloud-base observations. While the KE front remained nearly stationary during the cruise, the baiu front displayed large meridional displacements that changed wind direction across the KE front. The presence of sharp sea surface temperature (SST) gradients anchored by the KE enhanced the thermal and moisture advection, causing substantial changes in the marine atmospheric boundary layer (MABL) structure. When the baiu front was displaced north of the KE front, southwesterly winds advected warm, humid air from the subtropics over the cold water, producing a surface inversion favorable to fog formation. When the baiu front was to the south, on the other hand, northerly winds across the KE front destabilized the MABL, leading to the formation of a solid low-cloud deck beneath a strong capping inversion. The wind changes with the meridional displacement of the baiu front thus caused large variations in near-surface atmospheric stability and surface turbulent heat fluxes, with potential feedback on deep convection and fog/low-cloud formation around the front.


2017 ◽  
Author(s):  
Norbert Kalthoff ◽  
Fabienne Lohou ◽  
Barbara Brooks ◽  
Gbenga Jegede ◽  
Bianca Adler ◽  
...  

Abstract. A ground-based field campaign was conducted in southern West Africa from mid June to the end of July 2016 within the framework of the Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa (DACCIWA) project. It aimed to provide a high-quality comprehensive data set for process studies, in particular into interactions between low-level clouds (LLCs) and boundary-layer conditions. In this region missing observations are still a major issue. During the campaign, extensive remote sensing and in-situ measurements were conducted at three supersites: Kumasi (Ghana), Savè (Benin) and Ile-Ife (Nigeria). Daily radiosoundings were performed at 06:00 UTC and 15 intensive observation periods (IOPs) were performed during which additional radiosondes were launched every 1.5 to 3 h. Remotely piloted aerial systems were also operated during the IOPs. Extended stratiform LLCs form frequently in southern West Africa during the night time and persist long into the following day. They affect the radiation budget and hence the evolution of the atmospheric boundary layer and regional climate. The relevant parameters and processes governing the formation and dissolution of the LLCs are still not fully understood. This paper gives an overview of the diurnal cycles of the energy-balance components, near-surface temperature, humidity, wind speed and direction as well as the conditions (LLCs, low-level jet) in the boundary layer at the supersites and relates them to synoptic-scale conditions (monsoon layer, Harmattan layer, African easterly jet, tropospheric stratification) in the DACCIWA operational area. The characteristics of LLCs vary considerably from day to day, including a few almost cloud-free nights. During cloudy nights we found large differences in the LLC's formation and dissolution times as well as in the cloud-base height. The differences exist at individual sites and also between the sites. The synoptic conditions are characterised by a monsoon layer with south-westerly wind, on average about 1.9 km deep, and easterly wind above; the depth and strength of the monsoon flow show great day-to-day variability. Within the monsoon layer, a nocturnal low-level jet forms in approximately the same layer as the LLC. Its strength and duration is highly variable from night to night. This unique data set will allow us to test some new hypotheses about the processes involved in the development of LLCs and their interaction with the boundary layer and can also be used for model evaluation.


1998 ◽  
Vol 37 (3) ◽  
pp. 308-324 ◽  
Author(s):  
Stephen P. Palm ◽  
Denise Hagan ◽  
Geary Schwemmer ◽  
S. H. Melfi

Abstract A new technique for retrieving near-surface moisture and profiles of mixing ratio and potential temperature through the depth of the marine atmospheric boundary layer (MABL) using airborne lidar and multichannel infrared radiometer data is presented. Data gathered during an extended field campaign over the Atlantic Ocean in support of the Lidar In-space Technology Experiment are used to generate 16 moisture and temperature retrievals that are then compared with dropsonde measurements. The technique utilizes lidar-derived statistics on the height of cumulus clouds that frequently cap the MABL to estimate the lifting condensation level. Combining this information with radiometer-derived sea surface temperature measurements, an estimate of the near-surface moisture can be obtained to an accuracy of about 0.8 g kg−1. Lidar-derived statistics on convective plume height and coverage within the MABL are then used to infer the profiles of potential temperature and moisture with a vertical resolution of 20 m. The rms accuracy of derived MABL average moisture and potential temperature is better than 1 g kg−1 and 1°C, respectively. The method relies on the presence of a cumulus-capped MABL, and it was found that the conditions necessary for use of the technique occurred roughly 75% of the time. The synergy of simple aerosol backscatter lidar and infrared radiometer data also shows promise for the retrieval of MABL moisture and temperature from space.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1619
Author(s):  
Yingsai Ma ◽  
Xianhong Meng ◽  
Yinhuan Ao ◽  
Ye Yu ◽  
Guangwei Li ◽  
...  

The Loess Plateau is one land-atmosphere coupling hotspot. Soil moisture has an influence on atmospheric boundary layer development under specific early-morning atmospheric thermodynamic structures. This paper investigates the sensitivity of atmospheric convection to soil moisture conditions over the Loess Plateau in China by using the convective triggering potential (CTP)—humidity index (HIlow) framework. The CTP indicates atmospheric stability and the HIlow indicates atmospheric humidity in the low-level atmosphere. By comparing the model outcomes with the observations, the one-dimensional model achieves realistic daily behavior of the radiation and surface heat fluxes and the mixed layer properties with appropriate modifications. New CTP-HIlow thresholds for soil moisture-atmosphere feedbacks are found in the Loess Plateau area. By applying the new thresholds with long-time scales sounding data, we conclude that negative feedback is dominant in the north and west portion of the Loess Plateau; positive feedback is predominant in the south and east portion. In general, this framework has predictive significance for the impact of soil moisture on precipitation. By using this new CTP-HIlow framework, we can determine under what atmospheric conditions soil moisture can affect the triggering of precipitation and under what atmospheric conditions soil moisture has no influence on the triggering of precipitation.


2020 ◽  
Vol 13 (12) ◽  
pp. 6965-6987
Author(s):  
Jae-Sik Min ◽  
Moon-Soo Park ◽  
Jung-Hoon Chae ◽  
Minsoo Kang

Abstract. Accurate boundary layer structure and height are critical in the analysis of the features of air pollutants and local circulation. Although surface-based remote sensing instruments provide a high temporal resolution of the boundary layer structure, there are numerous uncertainties in terms of the accurate determination of the atmospheric boundary layer heights (ABLHs). In this study, an algorithm for an integrated system for ABLH estimation (ISABLE) was developed and applied to the vertical profile data obtained using a ceilometer and a microwave radiometer in Seoul city, Korea. A maximum of 19 ABLHs were estimated via the conventional time-variance, gradient, wavelet, and clustering methods using the backscatter coefficient from the ceilometer. Meanwhile, several stable boundary layer heights were extracted through near-surface inversion and environmental lapse rate methods using the potential temperature from the microwave radiometer. The ISABLE algorithm can find an optimal ABLH from post-processing, such as k-means clustering and density-based spatial clustering of applications with noise (DBSCAN) techniques. It was found that the ABLH determined using ISABLE exhibited more significant correlation coefficients and smaller mean bias and root mean square error between the radiosonde-derived ABLHs than those obtained using the most conventional methods. Clear skies exhibited higher daytime ABLH than cloudy skies, and the daily maximum ABLH was recorded in summer because of the more intense radiation. The ABLHs estimated by ISABLE are expected to contribute to the parameterization of vertical diffusion in the atmospheric boundary layer.


2021 ◽  
Author(s):  
Marta Wenta ◽  
Agnieszka Herman

<p>The ongoing development of NWP (Numerical Weather Prediction) models and their increasing horizontal resolution have significantly improved forecasting capabilities. However, in the polar regions models struggle with the representation of near-surface atmospheric properties and the vertical structure of the atmospheric boundary layer (ABL) over sea ice. Particularly difficult to resolve are near-surface temperature, wind speed, and humidity, along with diurnal changes of those properties. Many of the complex processes happening at the interface of sea ice and atmosphere, i.e. vertical fluxes, turbulence, atmosphere - surface coupling are poorly parameterized or not represented in the models at all. Limited data coverage and our poor understanding of the complex processes taking place in the polar ABL limit the development of suitable parametrizations. We try to contribute to the ongoing effort to improve the forecast skill in polar regions through the analysis of unmanned aerial vehicles (UAVs) and automatic weather station (AWS) atmospheric measurements from the coastal area of Bothnia Bay (Wenta et. al., 2021), and the application of those datasets for the analysis of regional NWP models' forecasts. </p><p>Data collected during HAOS (Hailuoto Atmospheric Observations over Sea ice) campaign (Wenta et. al., 2021) is used for the evaluation of regional NWP models results from AROME (Applications of Research to Operations at Mesoscale) - Arctic, HIRLAM (High Resolution Limited Area Model) and WRF (Weather Research and Forecasting). The presented analysis focuses on 27 Feb. 2020 - 2 Mar. 2020, the time of the HAOS campaign, shortly after the formation of new, thin sea ice off the westernmost point of Hailuoto island.  Throughout the studied period weather conditions changed from very cold (-14℃), dry and cloud-free to warmer (~ -5℃), more humid and opaquely cloudy. We evaluate models’ ability to correctly resolve near-surface temperature, humidity, and wind speed, along with vertical changes of temperature and humidity over the sea ice. It is found that generally, models struggle with an accurate representation of surface-based temperature inversions, vertical variations of humidity, and temporal wind speed changes. Furthermore, a WRF Single Columng Model (SCM) is launched to study whether specific WRF planetary boundary layer parameterizations (MYJ, YSU, MYNN, QNSE), vertical resolution, and more accurate representation of surface conditions increase the WRF model’s ability to resolve the ABL above sea ice in the Bay of Bothnia. Experiments with WRF SCM are also used to determine the possible reasons behind model’s biases. Preliminary results show that accurate representation of sea ice conditions, including thickness, surface temperature, albedo, and snow coverage is crucial for increasing the quality of NWP models forecasts. We emphasize the importance of further development of parametrizations focusing on the processes at the sea ice-atmosphere interface.</p><p> </p><p>Reference:</p><p>Wenta, M., Brus, D., Doulgeris, K., Vakkari, V., and Herman, A.: Winter atmospheric boundary layer observations over sea ice in the coastal zone of the Bay of Bothnia (Baltic Sea), Earth Syst. Sci. Data, 13, 33–42, https://doi.org/10.5194/essd-13-33-2021, 2021. </p><p><br><br><br><br><br><br></p>


Author(s):  
Jiaxin Wang ◽  
Guohua Wu ◽  
Liguo Zhang ◽  
Jingyuan Qu ◽  
Jiejuan Tong

The radon from uranium tailings spreads fast and has a wide range of pollution, which poses a potential radiation hazard to the environment and the public in downwind region. In this paper, the open and naked uranium tailings are selected as research object. By setting up multiple Gaussian plume models with single point source, the diffusion of radon in the uranium tailings is simulated with different atmospheric stability, average wind speed, height and downwind distance. The results show that the maximum radon concentration increases while the related downwind distance decreases as the atmospheric becoming stable. The higher wind speed does not affect the downwind distance where the maximum radon concentration occurs, but it decreases the maximum radon concentration. The concentration of radon in residential area decreases but the decreasing rate speeds up with height going up. The distribution of radon in vertical and horizontal direction tends to be homogeneous while the near-surface area concentration decreases rapidly as farther downwind distance.


Author(s):  
Dezhi Wei ◽  
Decheng Wan

Abstract Turbine-wake interactions among wind turbine array significantly affect the efficiency of wind farms. Yaw angle control is one of the potential ways to increase the total power generation of wind plants, but the sensitivity of such control strategy to atmospheric stability is rarely studied. In the present work, large-eddy simulation of a two-turbine configuration under convective atmospheric boundary layer is performed, with different yaw angles for the front one, the effect of turbine induced forces on the flow field is modeled by actuator line. Emphasis is placed on wake characteristics and aerodynamic performance. Simulation results reveal that atmospheric stability has a considerable impact on the behavior of wind turbine, wake deflection on the horizontal hub height plane for yawed wind turbine is relatively small, compared with the result of the empirical wake model proposed for wind turbine operating in the neutral stratification, which is attributed to the higher ambient turbulence intensity and large variance of wind direction in the convective condition. And associated with the smaller wake deflection, the total power production does not increase as expected when yawing the upstream turbine. In addition, due to the existence of great quantities of disorganized coherent turbulent structures in the unstable condition, the yaw bearing moment experienced by the downstream wind turbine increases dramatically, even if the rotor plane of the first turbine is perpendicular to the inflow direction.


Sign in / Sign up

Export Citation Format

Share Document