scholarly journals Optical atomic phase reference and timing

Author(s):  
L. Hollberg ◽  
E. H. Cornell ◽  
A. Abdelrahmann

Atomic clocks based on laser-cooled atoms have made tremendous advances in both accuracy and stability. However, advanced clocks have not found their way into widespread use because there has been little need for such high performance in real-world/commercial applications. The drive in the commercial world favours smaller, lower-power, more robust compact atomic clocks that function well in real-world non-laboratory environments. Although the high-performance atomic frequency references are useful to test Einstein's special relativity more precisely, there are not compelling scientific arguments to expect a breakdown in special relativity. On the other hand, the dynamics of gravity, evidenced by the recent spectacular results in experimental detection of gravity waves by the LIGO Scientific Collaboration, shows dramatically that there is new physics to be seen and understood in space–time science. Those systems require strain measurements at less than or equal to 10 −20 . As we discuss here, cold atom optical frequency references are still many orders of magnitude away from the frequency stability that should be achievable with narrow-linewidth quantum transitions and large numbers of very cold atoms, and they may be able to achieve levels of phase stability, Δ Φ / Φ total  ≤ 10 −20 , that could make an important impact in gravity wave science. This article is part of the themed issue ‘Quantum technology for the 21st century’.

Author(s):  
Andrea Bertoldi ◽  
Kai Bongs ◽  
Philippe Bouyer ◽  
Oliver Buchmueller ◽  
Benjamin Canuel ◽  
...  

AbstractThis article contains a summary of the White Paper submitted in 2019 to the ESA Voyage 2050 process, which was subsequently published in EPJ Quantum Technology (AEDGE Collaboration et al. EPJ Quant. Technol. 7,6 2020). We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity.


2018 ◽  
Vol 51 (4) ◽  
pp. 291-336 ◽  
Author(s):  
Antimo Graziano ◽  
Shaffiq Jaffer ◽  
Mohini Sain

Blends of polyethylene (PE) and polypropylene (PP) have always been the subject of intense reasearch for encouraging polymer waste recycling while producing new materials for specific applications in a sustainable way. However, being thermodynamically immiscible, these polyolefins form a binary system usually exhibiting lower performances compared with those of the homopolymers. Many studies have been carried out to better understand the PE/PP blend compatibilization for developing a high-performance and cost-effective product. Both nonreactive and reactive compatibilization promote the brittle to ductile transition for a PE/PP blend. However, the final product usually does not meet the requirements for high demanding commercial applications. Therefore, further PE/PP modification with a reinforcing filler, being either synthetic or natural, proved to be a good method for manufacturing high-performance reinforcend polymer blend composites, with superior and tailored properties. This review summarizes the recent progress in compatibilization techniques applied for enhancing the interfacial adhesion between PE and PP. Moreover, future perspectives on better understanding the influence of themodynamics on PE/PP synergy are discussed to introduce more effective compatibilization strategies, which will allow this blend to be used for innovative industrial applications.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 596
Author(s):  
Marco Buzzelli ◽  
Luca Segantin

We address the task of classifying car images at multiple levels of detail, ranging from the top-level car type, down to the specific car make, model, and year. We analyze existing datasets for car classification, and identify the CompCars as an excellent starting point for our task. We show that convolutional neural networks achieve an accuracy above 90% on the finest-level classification task. This high performance, however, is scarcely representative of real-world situations, as it is evaluated on a biased training/test split. In this work, we revisit the CompCars dataset by first defining a new training/test split, which better represents real-world scenarios by setting a more realistic baseline at 61% accuracy on the new test set. We also propagate the existing (but limited) type-level annotation to the entire dataset, and we finally provide a car-tight bounding box for each image, automatically defined through an ad hoc car detector. To evaluate this revisited dataset, we design and implement three different approaches to car classification, two of which exploit the hierarchical nature of car annotations. Our experiments show that higher-level classification in terms of car type positively impacts classification at a finer grain, now reaching 70% accuracy. The achieved performance constitutes a baseline benchmark for future research, and our enriched set of annotations is made available for public download.


2020 ◽  
Vol 9 (5) ◽  
pp. 221-225
Author(s):  
Ravi Kumar ◽  
Ana Rakonjac

AbstractAtom interferometry is one of the most promising technologies for high precision measurements. It has the potential to revolutionise many different sectors, such as navigation and positioning, resource exploration, geophysical studies, and fundamental physics. After decades of research in the field of cold atoms, the technology has reached a stage where commercialisation of cold atom interferometers has become possible. This article describes recent developments, challenges, and prospects for quantum sensors for inertial sensing based on cold atom interferometry techniques.


2021 ◽  
Author(s):  
Jason Thompson ◽  
Haifeng Zhao ◽  
Sachith Seneviratne ◽  
Rohan Byrne ◽  
Rajith Vidanaarachichi ◽  
...  

The sudden onset of the COVID-19 global health crisis and as-sociated economic and social fall-out has highlighted the im-portance of speed in modeling emergency scenarios so that ro-bust, reliable evidence can be placed in policy and decision-makers’ hands as swiftly as possible. For computational social scientists who are building complex policy models but who lack ready access to high-performance computing facilities, such time-pressure can hinder effective engagement. Popular and ac-cessible agent-based modeling platforms such as NetLogo can be fast to develop, but slow to run when exploring broad param-eter spaces on individual workstations. However, while deploy-ment on high-performance computing (HPC) clusters can achieve marked performance improvements, transferring models from workstations to HPC clusters can also be a technically challenging and time-consuming task. In this paper we present a set of generic templates that can be used and adapted by NetLogo users who have access to HPC clusters but require ad-ditional support for deploying their models on such infrastruc-ture. We show that model run-time speed improvements of be-tween 200x and 400x over desktop machines are possible using 1) a benchmark ‘wolf-sheep predation’ model in addition to 2) an example drawn from our own work modeling the spread of COVID-19 in Victoria, Australia. We describe how a focus on improving model speed is non-trivial for model development and discuss its practical importance for improved policy and de-cision-making in the real world. We provide all associated doc-umentation in a linked git repository.


2021 ◽  
Author(s):  
Zihao Yuan ◽  
Tao Zhang ◽  
Jeroen Van Duren ◽  
Ayse K. Coskun

Abstract Lab-grown diamond heat spreaders are becoming attractive solutions compared to traditional copper heat spreaders due to their high thermal conductivity, the ability to directly bond them on silicon, and allow for an ultra-thin silicon layer. Researchers have developed various thermal models and prototypes of lab-grown diamond heat spreaders to evaluate their cooling performance and heat spreading ability. The majority of existing thermal models are built using finite-element method (FEM) based simulators such as COMSOL and ANSYS. However, such commercial simulators are computationally expensive and lead to long solution times along with large memory requirements. These limitations make commercial simulators unsuitable for evaluating numerous design alternatives or runtime scenarios for real-world high-performance processors. Because of this modeling challenge, none of the existing works have evaluated the thermal behavior of lab-grown diamond heat spreaders on real-world high-performance processors running realistic application benchmarks. Recently, we have developed a parallel compact thermal simulator, PACT, that is able to carry out fast and accurate steady-state and transient thermal simulations and can be extended to support emerging integration and cooling technologies. In this paper, we use PACT to evaluate the steady-state and transient cooling performance of lab-grown diamond heat spreaders against traditional copper heat spreaders on various real-world high-performance processors (e.g., Intel i7 6950X, IBM Power9, and PicoSoC). By using PACT with architectural performance and power simulators such as Sniper and McPAT, we are able to run transient simulations with realistic benchmarks. Simulation results show that lab-grown diamond heat spreaders achieve maximum temperature and thermal gradient reductions of up to 26.73 °C and 13.75 °C when compared to traditional copper heat spreaders, respectively. The maximum steady-state and transient simulation times of PACT for the real-world high-performance chips and realistic applications used in our experiments are 259 s and 22 min, respectively.


Sign in / Sign up

Export Citation Format

Share Document