scholarly journals Sustainability in wood materials science: an opinion about current material development techniques and the end of lifetime perspectives

Author(s):  
Christian Goldhahn ◽  
Etienne Cabane ◽  
Munish Chanana

Wood is considered the most important renewable resource for a future sustainable bioeconomy. It is traditionally used in the building sector, where it has gained importance in recent years as a sustainable alternative to steel and concrete. Additionally, it is the basis for the development of novel bio-based functional materials. However, wood's sustainability as a green resource is often diminished by unsustainable processing and modification techniques. They mostly rely on fossil-based precursors and yield inseparable hybrids and composites that cannot be reused or recycled. In this article, we discuss the state of the art of environmental sustainability in wood science and technology. We give an overview of established and upcoming approaches for the sustainable production of wood-based materials. This comprises wood protection and adhesion for the building sector, as well as the production of sustainable wood-based functional materials. Moreover, we elaborate on the end of lifetime perspective of wood products. The concept of wood cascading is presented as a possibility for a more efficient use of the resource to increase its beneficial impact on climate change mitigation. We advocate for a holistic approach in wood science and technology that not only focuses on the material's development and production but also considers recycling and end of lifetime perspectives of the products. This article is part of the theme issue ‘Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)’.

2018 ◽  
Vol 2 (1) ◽  
pp. 14-18
Author(s):  
Chao Shang ◽  

Materials are the basis for human being survival and social development. To keep abreast with the increasing needs from all aspects of human society, there are huge needs in the development of advanced materials as well as high-efficiency but low-cost manufacturing strategies that are both sustainable and tunable. Synthetic biology, a new engineering principle taking gene regulation and engineering design as the core, greatly promotes the development of life sciences. This discipline has also contributed to the development of material sciences and will continuously bring new ideas to future new material design. In this paper, we review recent advances in applications of synthetic biology in material sciences, with the focus on how synthetic biology could enable synthesis of new polymeric biomaterials and inorganic materials, phage display and directed evolution of proteins relevant to materials development, living functional materials, engineered bacteria-regulated artificial photosynthesis system as well as applications of gene circuits for material sciences.


Think India ◽  
2019 ◽  
Vol 22 (3) ◽  
pp. 972-978
Author(s):  
Manisha Jetly ◽  
Dr. Nandita Singh

Education for sustainable development (ESD) enjoys a huge momentum worldwide in which the role of teachers for making sustainable development goals a reality has been recognized significantly. Teachers through their knowledge, attitudes and skills can bring the learning about these concepts to the curriculum and class room interaction and are in a position to influence their students. Therefore it is pertinent, that teachers are sensitised towards these issues, so that they prepare and nurture their students for making appropriate and responsible choices which contribute to a sustainable future. At this juncture it becomes crucial to understand their priorities and awareness level in context of the sustainable development. The present research paper aims to analyse the perception of forty post graduate pre-service teachers of the Chandigarh region, towards ESD through the dimensions of economic sustainability, environmental sustainability, social sustainability and cultural sustainability. For this researchers have adopted qualitative content analysis methodology for an in-depth study of the subjective responses through an open ended question. The findings suggest that most of the respondents associated the perception of ESD strongly with environmental sustainability. It is noted that the pre-service teachers lack a holistic approach towards ESD. On the basis of the findings it is recommended that there is an urgent need of integrating the concept of ESD consciously and conscientiously in India’s teacher education programmes.


2020 ◽  
Vol 05 ◽  
Author(s):  
Silas Santos ◽  
Orlando Rodrigues ◽  
Letícia Campos

Background: Innovation mission in materials science requires new approaches to form functional materials, wherein the concept of its formation begins in nano/micro scale. Rare earth oxides with general form (RE2O3; RE from La to Lu, including Sc and Y) exhibit particular proprieties, being used in a vast field of applications with high technological content since agriculture to astronomy. Despite of their applicability, there is a lack of studies on surface chemistry of rare earth oxides. Zeta potential determination provides key parameters to form smart materials by controlling interparticle forces, as well as their evolution during processing. This paper reports a study on zeta potential with emphasis for rare earth oxide nanoparticles. A brief overview on rare earths, as well as zeta potential, including sample preparation, measurement parameters, and the most common mistakes during this evaluation are reported. Methods: A brief overview on rare earths, including zeta potential, and interparticle forces are presented. A practical study on zeta potential of rare earth oxides - RE2O3 (RE as Y, Dy, Tm, Eu, and Ce) in aqueous media is reported. Moreover, sample preparation, measurement parameters, and common mistakes during this evaluation are discussed. Results: Potential zeta values depend on particle characteristics such as size, shape, density, and surface area. Besides, preparation of samples which involves electrolyte concentration and time for homogenization of suspensions are extremely valuable to get suitable results. Conclusion: Zeta potential evaluation provides key parameters to produce smart materials seeing that interparticle forces can be controlled. Even though zeta potential characterization is mature, investigations on rare earth oxides are very scarce. Therefore, this innovative paper is a valuable contribution on this field.


2021 ◽  
Vol 22 (9) ◽  
pp. 4543
Author(s):  
Xuan-Hung Pham ◽  
Seung-min Park ◽  
Bong-Hyun Jun

Nano/micro particles are considered to be the most valuable and important functional materials in the field of materials science and engineering [...]


Ceramics ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 20-40
Author(s):  
Ambreen Nisar ◽  
Cheng Zhang ◽  
Benjamin Boesl ◽  
Arvind Agarwal

Spark plasma sintering (SPS) has gained recognition in the last 20 years for its rapid densification of hard-to-sinter conventional and advanced materials, including metals, ceramics, polymers, and composites. Herein, we describe the unconventional usages of the SPS technique developed in the field. The potential of various new modifications in the SPS technique, from pressureless to the integration of a novel gas quenching system to extrusion, has led to SPS’ evolution into a completely new manufacturing tool. The SPS technique’s modifications have broadened its usability from merely a densification tool to the fabrication of complex-shaped components, advanced functional materials, functionally gradient materials, interconnected materials, and porous filter materials for real-life applications. The broader application achieved by modification of the SPS technique can provide an alternative to conventional powder metallurgy methods as a scalable manufacturing process. The future challenges and opportunities in this emerging research field have also been identified and presented.


MRS Bulletin ◽  
1986 ◽  
Vol 11 (4) ◽  
pp. 27-27 ◽  
Author(s):  
John J. Gilman

The boundaries between the present performance of materials and the requirements of device designers have for centuries been moving forward. The steps taken to draw these two together are sometimes large; more often they are small. As they occur, we find materials that are stronger, have larger magnetic moments, have higher electron mobilities, etc. Each time the property profile improves, understanding of the physical and chemical properties advances, and new engineering devices based on the improved profile are invented and developed.The purpose of the Center for Advanced Materials (CAM) at the Lawrence Berkeley Laboratory (LBL) is to enhance the inter-play between advances in the property profiles of materials and advances in the chemical and physical understanding of them. For this purpose, the location of CAM can be described as ideal. The proximity of this national laboratory to the campus of the University of California at Berkeley provides an unusually rich intellectual setting for the Center. It also provides unique opportunities for the University students and faculty who conduct materials-related research. Indeed, the arrangement should be a model for similar organizations, and it represents a solid method for strengthening materials science and technology throughout the nation.National policy in critical materials has given the national laboratories—including LBL—strong direction and incentive to collaborate with industry and the research universities. This incentive led to the establishment of CAM in order to build on the symbiosis between LBL and the University of California at Berkeley. It strives to extend this symbiosis by bringing industry into the ongoing educational process and by making its special facilities more readily available to industrial researchers.


Sign in / Sign up

Export Citation Format

Share Document