scholarly journals Permafrost thaw driven changes in hydrology and vegetation cover increase trace gas emissions and climate forcing in Stordalen Mire from 1970 to 2014

Author(s):  
Ruth K. Varner ◽  
Patrick M. Crill ◽  
Steve Frolking ◽  
Carmody K. McCalley ◽  
Sophia A. Burke ◽  
...  

Permafrost thaw increases active layer thickness, changes landscape hydrology and influences vegetation species composition. These changes alter belowground microbial and geochemical processes, affecting production, consumption and net emission rates of climate forcing trace gases. Net carbon dioxide (CO 2 ) and methane (CH 4 ) fluxes determine the radiative forcing contribution from these climate-sensitive ecosystems. Permafrost peatlands may be a mosaic of dry frozen hummocks, semi-thawed or perched sphagnum dominated areas, wet permafrost-free sedge dominated sites and open water ponds. We revisited estimates of climate forcing made for 1970 and 2000 for Stordalen Mire in northern Sweden and found the trend of increasing forcing continued into 2014. The Mire continued to transition from dry permafrost to sedge and open water areas, increasing by 100% and 35%, respectively, over the 45-year period, causing the net radiative forcing of Stordalen Mire to shift from negative to positive. This trend is driven by transitioning vegetation community composition, improved estimates of annual CO 2 and CH 4 exchange and a 22% increase in the IPCC's 100-year global warming potential (GWP_100) value for CH 4 . These results indicate that discontinuous permafrost ecosystems, while still remaining a net overall sink of C, can become a positive feedback to climate change on decadal timescales. This article is part of a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 2)’.

2019 ◽  
Vol 5 (1) ◽  
pp. 1-26 ◽  
Author(s):  
Maude Pelletier ◽  
Michel Allard ◽  
Esther Levesque

Permafrost thaw, tundra shrubification, and changes in snow cover properties are documented impacts of climate warming, particularly in subarctic regions where discontinuous permafrost is disappearing. To obtain some insight into those changes, permafrost, active layer thickness, vegetation, snow cover, ground temperature, soil profiles, and carbon content were surveyed in an integrated approach in six field plots along a chronosequence of permafrost thaw on an ice-rich silty soil. Historical air photographs and dendrochronology provided the chronological context. Comparison of the plots reveals a positive feedback effect between thaw settlement, increased snow cover thickness, shrub growth, increase in soil temperature, and the process of permafrost decay. By the end of the sequence permafrost was no longer sustainable. Along the estimated 90 year duration of the chronosequence, the originally centimeter-thin pedogenic horizons under mosses and lichens increased to a thickness of nearly 65 cm under shrubs and trees. Snow cover increased from negligible to over 2 m. The thickness of soil organic layers and soil organic matter content increased manyfold, likely a result of the increased productivity in the shrub-dominated landscape. The results of this study strongly suggest that permafrost ecosystems in the subarctic are being replaced under climate warming by shrub and forest ecosystems enriched in carbon on more evolved soils.


2019 ◽  
Vol 23 (4) ◽  
pp. 2015-2039 ◽  
Author(s):  
William Quinton ◽  
Aaron Berg ◽  
Michael Braverman ◽  
Olivia Carpino ◽  
Laura Chasmer ◽  
...  

Abstract. Scotty Creek, Northwest Territories (NWT), Canada, has been the focus of hydrological research for nearly three decades. Over this period, field and modelling studies have generated new insights into the thermal and physical mechanisms governing the flux and storage of water in the wetland-dominated regions of discontinuous permafrost that characterises much of the Canadian and circumpolar subarctic. Research at Scotty Creek has coincided with a period of unprecedented climate warming, permafrost thaw, and resulting land cover transformations including the expansion of wetland areas and loss of forests. This paper (1) synthesises field and modelling studies at Scotty Creek, (2) highlights the key insights of these studies on the major water flux and storage processes operating within and between the major land cover types, and (3) provides insights into the rate and pattern of the permafrost-thaw-induced land cover change and how such changes will affect the hydrology and water resources of the study region.


2021 ◽  
Vol 7 (14) ◽  
pp. eabe9765
Author(s):  
Daniel I. Herman ◽  
Chinthaka Weerasekara ◽  
Lindsay C. Hutcherson ◽  
Fabrizio R. Giorgetta ◽  
Kevin C. Cossel ◽  
...  

Advances in spectroscopy have the potential to improve our understanding of agricultural processes and associated trace gas emissions. We implement field-deployed, open-path dual-comb spectroscopy (DCS) for precise multispecies emissions estimation from livestock. With broad atmospheric dual-comb spectra, we interrogate upwind and downwind paths from pens containing approximately 300 head of cattle, providing time-resolved concentration enhancements and fluxes of CH4, NH3, CO2, and H2O. The methane fluxes determined from DCS data and fluxes obtained with a colocated closed-path cavity ring-down spectroscopy gas analyzer agree to within 6%. The NH3 concentration retrievals have sensitivity of 10 parts per billion and yield corresponding NH3 fluxes with a statistical precision of 8% and low systematic uncertainty. Open-path DCS offers accurate multispecies agricultural gas flux quantification without external calibration and is easily extended to larger agricultural systems where point-sampling-based approaches are insufficient, presenting opportunities for field-scale biogeochemical studies and ecological monitoring.


2013 ◽  
Vol 17 (11) ◽  
pp. 4401-4413 ◽  
Author(s):  
J. S. Deems ◽  
T. H. Painter ◽  
J. J. Barsugli ◽  
J. Belnap ◽  
B. Udall

Abstract. The Colorado River provides water to 40 million people in seven western states and two countries and to 5.5 million irrigated acres. The river has long been overallocated. Climate models project runoff losses of 5–20% from the basin by mid-21st century due to human-induced climate change. Recent work has shown that decreased snow albedo from anthropogenic dust loading to the CO mountains shortens the duration of snow cover by several weeks relative to conditions prior to western expansion of the US in the mid-1800s, and advances peak runoff at Lees Ferry, Arizona, by an average of 3 weeks. Increases in evapotranspiration from earlier exposure of soils and germination of plants have been estimated to decrease annual runoff by more than 1.0 billion cubic meters, or ~5% of the annual average. This prior work was based on observed dust loadings during 2005–2008; however, 2009 and 2010 saw unprecedented levels of dust loading on snowpacks in the Upper Colorado River Basin (UCRB), being on the order of 5 times the 2005–2008 loading. Building on our prior work, we developed a new snow albedo decay parameterization based on observations in 2009/10 to mimic the radiative forcing of extreme dust deposition. We convolve low, moderate, and extreme dust/snow albedos with both historic climate forcing and two future climate scenarios via a delta method perturbation of historic records. Compared to moderate dust, extreme dust absorbs 2× to 4× the solar radiation, and shifts peak snowmelt an additional 3 weeks earlier to a total of 6 weeks earlier than pre-disturbance. The extreme dust scenario reduces annual flow volume an additional 1% (6% compared to pre-disturbance), a smaller difference than from low to moderate dust scenarios due to melt season shifting into a season of lower evaporative demand. The sensitivity of flow timing to dust radiative forcing of snow albedo is maintained under future climate scenarios, but the sensitivity of flow volume reductions decreases with increased climate forcing. These results have implications for water management and suggest that dust abatement efforts could be an important component of any climate adaptation strategies in the UCRB.


2001 ◽  
Vol 65 (1) ◽  
pp. 49-58 ◽  
Author(s):  
Asger R. Pedersen ◽  
Søren O. Petersen ◽  
Finn P. Vinther

2017 ◽  
Author(s):  
Didin Agustian Permadi ◽  
Nguyen Thi Kim Oanh ◽  
Robert Vautard

Abstract. Following Part 1 (Permadi et al., 2017a) which focuses on the preparation of emission input data and evaluation of WRF/CHIMERE performance in 2007, this paper presents Part 2 of our research detailing the quantification of co-benefits resulted in the future (2030) from black carbon (BC) emission reduction measures for Southeast Asia (SEA) countries. The business as usual (BAU2030) projected emissions from the base year of 2007 (BY2007) assuming no intervention with the linear projection of the emissions based on the past decadal activity data (Indonesia and Thailand) and the sectoral GDP growth for other countries. The RED2030 featured measures to cut down emission in major four source sectors in Indonesia and Thailand (on-road transport, residential cooking, industry, and biomass open burning) while for other countries the representative concentration pathway 8.5 (RCP8.5) emissions were assumed. WRF/CHIMERE simulated levels of aerosol species under BAU2030 and RED2030 for the SEA domain using the base year meteorology and 2030 boundary conditions from LMDZ/INCA. The extended aerosol optical depth module (AODEM) calculated the total columnar AOD and BC AOD assuming the internal mixing state for the two future scenarios. Health benefits were analyzed in term of the avoided number of premature deaths associated with ambient PM2.5 reduction while the climate benefits were quantified using the reduction in the BC radiative forcing under RED2030. Under BAU2030, the average number of the premature deaths per 100,000 population in the domain would increase by 30 from BY2007 while under RED2030 the premature deaths would be cut-down (avoided) by 59 from the RED2030. In 2007, the maximum annual average BC radiative forcing in SEA countries was 0.98 W m−2 which would increase to 2.0 W m−2 under BAU2030 and 1.4 W m−2 under RED2030. Substantial co-benefits on human health and BC climate forcing reduction in SEA could be resulted from the emission measures incorporated in RED2030. Future works should consider other benefits such as for the agricultural crop production, and the cost benefit analysis of the measures implementation to provide relevant information for policy making.


2016 ◽  
Vol 42 (2) ◽  
pp. 457 ◽  
Author(s):  
F. Hrbáček ◽  
M. Oliva ◽  
K. Laska ◽  
J. Ruiz-Fernández ◽  
M. A. De Pablo ◽  
...  

Permafrost controls geomorphic processes in ice-free areas of the Antarctic Peninsula (AP) region. Future climate trends will promote significant changes of the active layer regime and permafrost distribution, and therefore a better characterization of present-day state is needed. With this purpose, this research focuses on Ulu Peninsula (James Ross Island) and Byers Peninsula (Livingston Island), located in the area of continuous and discontinuous permafrost in the eastern and western sides of the AP, respectively. Air and ground temperatures in as low as 80 cm below surface of the ground were monitored between January and December 2014. There is a high correlation between air temperatures on both sites (r=0.74). The mean annual temperature in Ulu Peninsula was -7.9 ºC, while in Byers Peninsula was -2.6 ºC. The lower air temperatures in Ulu Peninsula are also reflected in ground temperatures, which were between 4.9 (5 cm) and 5.9 ºC (75/80 cm) lower. The maximum active layer thickness observed during the study period was 52 cm in Ulu Peninsula and 85 cm in Byers Peninsula. Besides climate, soil characteristics, topography and snow cover are the main factors controlling the ground thermal regime in both areas.


Sign in / Sign up

Export Citation Format

Share Document