Electron microscopy of the glio-vascular organization of the brain of octopus

The glio-vascular organization of the octopus brain has been studied by light and electron microscopy. The structure of the walls of the blood vessels has been described. Two types of neuroglia can be recognized, the fibrous and protoplasmic glia; also enigmatic dark cells. Most blood vessels in the neuropil are surrounded by extracellular zones containing collagen. These zones give off glio-vascular tunnels (strands) that penetrate the neuropil in a complex network. The extracellular zones and tunnels contain in addition to collagen, smooth muscle cells and fibrocytes. Glial processes surround the extracellular zones and incompletely partition them from the neuropil. The small neuronal perikarya have no glial folds around them. The medium-size cells have thin glial sheets or finger processes related to their surfaces, which may indent the cells to form small trophospongia. The large neurons of the suboesophageal lobe have complex glial sheaths interspersed with extracellular channels. Both penetrate the neurons to form complex trophospongia. A new form of extracellular material has been observed in these extracellular channels. The occurrence of trophospongia in vertebrate and invertebrate neurons may be correlated with the absence of dendrites. Special problems discussed include the nature of the trophospongial function, the question of fluid-filled extracellular zones and their possible function as lymph channels, and the presence in some of them of haemocyanin molecules identical with those in the blood vessels. Perhaps of special importance is the observation that the lobes of the octopus brain are permeated with extracellular tunnels containing smooth muscle fibres, but it still needs to be determined whether or not the muscle cells in the tunnels of the neuropil actively contract and massage the neuropil to facilitate metabolic and other exchanges.

1981 ◽  
Vol 54 (5) ◽  
pp. 646-651 ◽  
Author(s):  
Nobuyuki Kawano ◽  
Kinuko Suzuki

✓ The authors encountered a case of chronic subdural hematoma of which the subdural neomembrane (SN) showed numerous spindle-shaped cells identified as smooth-muscle cells (SMC's) by electron microscopy. On reexamination of 214 cases from the files, SMC's were found with light microscopy in seven cases. In these cases, the SN was well organized (collagenized). In three additional cases examined with both light and electron microscopy, SMC's were not apparent with light microscopy. However, in all cases, cells with ultrastructural features of both fibroblasts and SMC's were observed. Well formed SMC's were found in two additional cases of well organized membrane. Based on these observations, it is concluded that the presence of SMC's in the SN is not a rare phenomenon. The possible origin of SMC's in the SN and their pathological significance to the organizing process of chronic subdural hematoma are discussed.


1995 ◽  
Vol 73 (12) ◽  
pp. 2259-2265 ◽  
Author(s):  
M. N. Fernandes ◽  
S. A. Perna

The structural organization of the interbranchial septum of the gill arch of the air-breathing loricariid fish Hypostomus plecostomus was examined using light and electron microscopy. In the middle of the interbranchial septum, an extensive interconnection was found between the afferent primary arteries from successive and opposing primary lamellae. The blood circulates among numerous trabeculae consisting of connective tissue, smooth muscle cells, and collagen fibres. A sheet of smooth muscle cells is localized at the borders of these interconnected primary arteries and joins the cartilage rod from one primary lamella to the adjacent one on the same hemibranch. The adductor muscles are restricted to the distal end of the interbranchial septum and consist of transverse and oblique striated muscle fibres fixed to the cartilage rod from the primary lamella of opposite hemibranchs. The arrangement of these muscle fibres suggests a double movement of adduction: approximation of the tips of the primary lamellae of opposing hemibranchs and reduction of the space between adjacent primary lamellae of the same hemibranch. The action of both smooth and striated muscles reduces the interconnecting vascular septal space between the primary arteries, which may allow fine adjustment of vascular perfusion of the distal part of the filaments as an adaptation for better blood flow under hypoxic conditions.


2021 ◽  
pp. 1-13
Author(s):  
Kaveh Sanaei ◽  
Sydney Plotner ◽  
Anson Oommen Jacob ◽  
Jaime Ramirez-Vick ◽  
Narendra Vyavahare ◽  
...  

BACKGROUND: The main objective of tissue engineering is to fabricate a tissue construct that mimics native tissue both biologically and mechanically. A recurring problem for tissue-engineered blood vessels (TEBV) is deficient elastogenesis from seeded smooth muscle cells. Elastin is an integral mechanical component in blood vessels, allowing elastic deformation and retraction in response to the shear and pulsatile forces of the cardiac system. OBJECTIVE: The goal of this research is to assess the effect of the vitamin A derivative all-trans retinoic acid (RA) and polyphenol pentagalloyl glucose (PGG) on the expression of elastin in human aortic smooth muscle cells (hASMC). METHODS: A polycaprolactone (PCL) and the gelatin polymer composite was electrospun and doped with RA and PGG. The scaffolds were subsequently seeded with hASMCs and incubated for five weeks. The resulting tissue-engineered constructs were evaluated using qPCR and Fastin assay for their elastin expression and deposition. RESULTS: All treatments showed an increased elastin expression compared to the control, with PGG treatments showing a significant increase in gene expression and elastin deposition.


Author(s):  
Rashmi Monteiro ◽  
Shikha Sharma ◽  
Sonal Gupta ◽  
Indu Choudhary

Angiomyolipoma is a benign neoplasm composed of variable admixture of blood vessels, smooth muscle cells and adipose tissue. Cervical angiomyolipoma are extremely rare and to the best of our knowledge only five cases of angiomyolipoma in cervix have been reported in the literature till date. Authors are presenting a case of angiomyolipoma arising from the uterine cervix. 43 years old female presented with mass descending per vagina for 6 months. This case had no association with tuberous sclerosis. Microscopic examination showed an ill-defined polypoidal, non-encapsulated lesion covered by keratinized stratified epithelium. The lesion is made up of three components, predominantly by fascicles of spindle shaped cells, varying sized blood vessels and multiple foci of mature adipocytes with no evidence of atypia or increased mitotic activity. Smooth muscle component showed strong immunoreactivity to SMA and absence of elastic fibres in the blood vessels were confirmed by histochemistry. Non-vascular smooth muscle cells were negative for HMB-45 in contrast to renal and other extra-renal angiomyolipoma in which HMB-45 immunoreactivity in seen in these cells. To conclude, the differential diagnosis of lower abdominal mass and dysfunctional uterine bleeding should include the angiomyolipoma, even though the uterine cervix is an extremely rare location where they occur.


2018 ◽  
Vol 33 (4) ◽  
pp. 416-425 ◽  
Author(s):  
Jia Yan ◽  
Kun Hu ◽  
YongHao Xiao ◽  
Fan Zhang ◽  
Lu Han ◽  
...  

A novel recombinant human-like collagen/fibroin scaffold has been prepared previously, which has high porosity, controllable pore size, and much better mechanical properties than the reported fibroin-based scaffold. In this research, the cell responses of vascular smooth muscle cells to this blend scaffold were examined in vitro. Cell morphology, adherence, and growth in scaffolds were observed by scanning electron microscopy, laser scanning confocal microscopy after staining of the cells with propidium iodide at 1, 3, 5, and 7 days, respectively. A wide range of measurements, including 3-[4,5–dimethylthiazol-2-yl]-2, 5-diphenyl tetrasodium bromide assay, and total intracellular protein content at the end of 7 days culture, were conducted. An increase of viability and protein content of vascular smooth muscle cells cultured in recombinant human-like collagen/fibroin scaffold was found. The laser scanning confocal microscopy and scanning electron microscopy results confirm that the cells readily adhered and proliferation in the blend than in fibroin scaffold, and indicate a better adhesion process. The positive effects were especially significant for vascular smooth muscle cells. The recombinant human-like collagen/fibroin scaffold could be a promising biomaterial for vascular tissue engineering.


1975 ◽  
Author(s):  
V. Noordhoek Hegt

Endothelial plasminogen activator activity in different types of human blood vessels obtained from fifty necropsies and thirty-five biopsies was detected and localized by means of plasminogen-rich fibrin slides. Great differences in endothelial activator activity were found along and across (vasa vasorum) the wall of the human vascular system.The same blood vessels were simultaneously investigated by a modified fibrin slide technique using plasminogen-free fibrin slides covered by plasmin to detect and localize inhibition of fibrinolysis in the vascular wall. The great variation in plasmin inhibition in different vessels revealed by this “fibrin slide sandwich technique” appeared to be closely associated with the localization and number of smooth muscle cells present in the walls of the vascular system. Strong plasmin inhibition was generally found at sites which showed no activator activity with the regular fibrin slide technique, while areas with a high endothelial fibrinolytic activity mostly revealed no inhibitory capacity.These results indicate that much of the variation in endothelial fibrinolytic activity on fibrin slides is due to inhibitory effects from the surrounding smooth muscle cells rather than to variability in the plasminogen activator content of the endothelium itself.


1997 ◽  
Vol 17 (4) ◽  
pp. 665-671 ◽  
Author(s):  
Frank T. L. van der Loop ◽  
Giulio Gabbiani ◽  
Gaby Kohnen ◽  
Frans C. S. Ramaekers ◽  
Guillaume J. J. M. van Eys

Sign in / Sign up

Export Citation Format

Share Document