Migration of gonocytes into the mammalian gonad and their differentiation

The migration of the germ cells into the mammalian gonad and their subsequent differentiation has been the subject of many investigations and controversies. However, sufficient facts have accumulated which led Witschi (1962) to state that ‘the formerly controversial subject of the origin and unbroken continuity of the germ cell lines can now be considered settled’. Histo-chemical techniques for alkaline phosphatase have made it possible to selectively stain and identify primordial germ cells (McKay, Hertig, Adams & Danziger 1953; Chiquoine 1954; Mintz 1959). The path and development of the germ cells has been described in detail in histological investigation (for review see Brambell 1956; Mintz 1960; Franchi, Mandl & Zuckerman 1962) and recently labelling techniques have made the continuity of the germ cell line ‘visible’ (Rudkin & Griech 1962; Peters, Levy & Crone 1962; Kennelly & Foote 1966; Borum 1966; Peters & Crone 1967).

2018 ◽  
Vol 30 (1) ◽  
pp. 231
Author(s):  
F. F. Bressan ◽  
M. A. Lima ◽  
L. S. Machado ◽  
N. C. G. Pieiri ◽  
P. Fantinato-Neto ◽  
...  

Embryonic pluripotent stem cells (ESC) and induced pluripotent stem cells (iPSC) were reported capable of differentiating into primordial germ cell-like (PGCL) and functional gametes in vitro in the murine model (Hikabe et al. 2016 Nature 539, 299-303). The in vitro generation of primordial germ cells (PGC) and gametes from farm animals would greatly contribute to enhance animal production technologies and to the creation of adequate models for several disorders. The present study aimed at the generation of PGC in vitro (iPGC) from iPSC in cattle and their characterisation through pluripotency and germ cell markers. For that, bovine iPSC previously generated and characterised (Bressan et al. 2015 Reprod. Fertil. Dev. 27, 254) were submitted to in vitro differentiation into epiblast-like cells (EpiLC) and iPGC by the protocol adapted from mice (Hayashi et al. 2011 Cell 146, 519-532). The biPS cells were induced into EpiLC by culture in fibronectin-coated (16.7 µg mL−1) 6-well plates in N2B27 culture medium supplemented with 20 ng mL−1 activin A, 12 ng mL−1 basic fibroblast growth factor (bFGF), and 1% knockout serum replacement (KSR) for 48 h and further differentiated into iPGC by non-adherent culture (Agreewell plates, StemCell Technologies, Vancouver, BC, Canada) with GK15 medium (GMEM supplemented with 15% KSR, 0.1 mM nonessential amino acids, 1 mM sodium pyruvate, 0.1 mM 2-mercaptoethanol, 2 mm l-glutamine, and 1% antibiotics) in the presence of 500 ng mL−1 BMP4, 100 ng mL−1 SCF, 500 ng mL−1 BMP8b, and 50 ng mL−1 epidermal growth factor for 4 days. The cells were then characterised regarding morphology, detection of alkaline phosphatase, immunofluorescence for OCT4, DDX4, VASA, and c-Kit proteins, and transcripts of pluripotency-related genes OCT4 and SOX2, as well as of imprinted genes (H19, SNRPN) and imprinted-related (DNMT1, DNMT3B) genes were analysed through RT-qPCR and compared with constitutive genes GAPDH, NAT1, and ACTB. Alkaline phosphatase and immunofluorescence analysis were positive for all specific markers. Interestingly, although OCT4 and SOX2 expression was present in iPS, EpiLC, and iPGC, this last group presented greater OCT4 and lesser SOX2 transcript amounts compared with other groups, suggesting, as expected, that PGC are still pluripotent but may already be differentiating into germ-cell lineages. The expression of H19 was increased in iPGC, whereas the expression of SNRPN was decreased only in the fibroblast group, potentially indicating epigenetic reprogramming process in these cells. Expression of DNMT1 and DNMT3B was not different between pluripotent groups but subtly increased when compared with that in fibroblasts. The results obtained herein represent an important first step in the in vitro generation of PGC and gametes from domestic farm animals, an unprecedented and desirable tool for enhancing new reproductive technologies and providing new understanding of cellular reprogramming and pluripotent germ cell biology. Financially supported by FAPESP grants 2013/08135-2, 2013/13686-8, 2015/26818-5; CNPq 482163/2013-5.


2020 ◽  
Vol 21 (8) ◽  
pp. 3009
Author(s):  
Damian M. Janecki ◽  
Erkut Ilaslan ◽  
Maciej J. Smialek ◽  
Marcin P. Sajek ◽  
Maciej Kotecki ◽  
...  

While two mouse NANOS paralogues, NANOS2 and NANOS3, are crucial for maintenance of germ cells by suppression of apoptosis, the mouse NANOS1 paralogue does not seem to regulate these processes. Previously, we described a human NANOS1 p.[(Pro34Thr);(Ser83del)] mutation associated with the absence of germ cells in seminiferous tubules of infertile patients, which might suggest an anti-apoptotic role of human NANOS1. In this study, we aimed to determine a potential influence of human NANOS1 on the maintenance of TCam-2 model germ cells by investigating proliferation, cell cycle, and apoptosis. Constructs encoding wild-type or mutated human NANOS1 were used for transfection of TCam-2 cells, in order to investigate the effect of NANOS1 on cell proliferation, which was studied using a colorimetric assay, as well as apoptosis and the cell cycle, which were measured by flow cytometry. RNA-Seq (RNA sequencing) analysis followed by RT-qPCR (reverse transcription and quantitative polymerase chain reaction) was conducted for identifying pro-apoptotic genes repressed by NANOS1. Here, we show that overexpression of NANOS1 downregulates apoptosis in TCam-2 cells. Moreover, we found that NANOS1 represses a set of pro-apoptotic genes at the mRNA level. We also found that the infertility-associated p.[(Pro34Thr);(Ser83del)] mutation causes NANOS1 to functionally switch from being anti-apoptotic to pro-apoptotic in the human male germ cell line. Thus, this report is the first to show an anti-apoptotic role of NANOS1 exerted by negative regulation of mRNAs of pro-apoptotic genes.


Development ◽  
1995 ◽  
Vol 121 (5) ◽  
pp. 1487-1496 ◽  
Author(s):  
G.R. MacGregor ◽  
B.P. Zambrowicz ◽  
P. Soriano

Mouse primordial germ cells express tissue non-specific alkaline phosphatase (TNAP) during development, but the widespread expression of another alkaline phosphatase gene in the early embryo limits the potential use of this marker to trace germ cells. To attempt to identify germ cells at all stages during embryonic development and to understand the role of TNAP in germ cell ontogeny, mice carrying a beta geo (lacZ/neor) disrupted allele of the TNAP gene were generated by homologous recombination in embryonic stem cells. Using beta-galactosidase activity, the embryonic pattern of TNAP expression was examined from the blastocyst stage to embryonic day 14. Results indicate that primordial germ cell progenitors do not express TNAP prior to gastrulation although at earlier times TNAP expression is found in an extraembryonic lineage destined to form the chorion. In homozygous mutants, primordial germ cells appear unaffected indicating that TNAP is not essential for their development or migration.


Author(s):  
Arend W. Overeem ◽  
Yolanda W. Chang ◽  
Jeroen Spruit ◽  
Celine M. Roelse ◽  
Susana M. Chuva De Sousa Lopes

The human germ cell lineage originates from primordial germ cells (PGCs), which are specified at approximately the third week of development. Our understanding of the signaling pathways that control this event has significantly increased in recent years and that has enabled the generation of PGC-like cells (PGCLCs) from pluripotent stem cells in vitro. However, the signaling pathways that drive the transition of PGCs into gonia (prospermatogonia in males or premeiotic oogonia in females) remain unclear, and we are presently unable to mimic this step in vitro in the absence of gonadal tissue. Therefore, we have analyzed single-cell transcriptomics data of human fetal gonads to map the molecular interactions during the sex-specific transition from PGCs to gonia. The CellPhoneDB algorithm was used to identify significant ligand–receptor interactions between germ cells and their sex-specific neighboring gonadal somatic cells, focusing on four major signaling pathways WNT, NOTCH, TGFβ/BMP, and receptor tyrosine kinases (RTK). Subsequently, the expression and intracellular localization of key effectors for these pathways were validated in human fetal gonads by immunostaining. This approach provided a systematic analysis of the signaling environment in developing human gonads and revealed sex-specific signaling pathways during human premeiotic germ cell development. This work serves as a foundation to understand the transition from PGCs to premeiotic oogonia or prospermatogonia and identifies sex-specific signaling pathways that are of interest in the step-by-step reconstitution of human gametogenesis in vitro.


2018 ◽  
Author(s):  
Kathryn E. Kistler ◽  
Tatjana Trcek ◽  
Thomas R. Hurd ◽  
Ruoyu Chen ◽  
Feng-Xia Liang ◽  
...  

ABSTRACTGerm granules are non-membranous ribonucleoprotein granules deemed the hubs for post-transcriptional gene regulation and functionally linked to germ cell fate across species. Little is known about the physical properties of germ granules and how these relate to germ cell function. Here we study two types of germ granules in the Drosophila embryo: cytoplasmic germ granules that instruct primordial germ cells (PGCs) formation and nuclear germ granules within early PGCs with unknown function. We show that cytoplasmic and nuclear germ granules are phase transitioned condensates nucleated by Oskar protein that display liquid as well as hydrogel-like properties. Focusing on nuclear granules, we find that Oskar drives their formation in heterologous cell systems. Multiple, independent Oskar protein domains synergize to promote granule phase separation. Deletion of Oskar’s nuclear localization sequence specifically ablates nuclear granules in cell systems. In the embryo, nuclear germ granules promote germ cell divisions thereby increasing PGC number for the next generation.


2008 ◽  
Vol 78 (Suppl_1) ◽  
pp. 64-64
Author(s):  
Jillian Guttormsen ◽  
Gerrit J. Bouma ◽  
Frances Bhushan ◽  
Trevor Williams ◽  
Quinton A. Winger

2008 ◽  
Vol 20 (8) ◽  
pp. 900 ◽  
Author(s):  
Yoshiaki Nakamura ◽  
Yasuhiro Yamamoto ◽  
Fumitake Usui ◽  
Yusuke Atsumi ◽  
Yohei Ito ◽  
...  

The aim of the present study was to improve the efficiency of endogenous primordial germ cell (PGC) depletion and to increase the ratio of donor PGCs in the gonads of recipient chicken embryos. A sustained-release emulsion was prepared by emulsifying equal amounts of Ca2+- and Mg2+-free phosphate-buffered saline containing 10% busulfan solubilised in N,N-dimethylformamide and sesame oil, using a filter. Then, 75 μg per 50 μL busulfan sustained-release emulsion was injected into the yolk. To determine the depletion and repopulation of PGCs in the gonads after 6 days incubation, whole-mount immunostaining was performed. The busulfan sustained-release emulsion significantly reduced the number of endogenous PGCs compared with control (P < 0.05). Moreover, the busulfan sustained-release emulsion significantly depleted endogenous PGCs compared with other previously reported busulfan delivery systems (P < 0.05), but with less variation, suggesting that the sustained-release emulsion delivered a consistent amount of busulfan to the developing chicken embryos. The PGC transfer study showed that the proportion of donor PGCs in the gonads of busulfan sustained-release emulsion-treated embryos after 6 days incubation increased 28-fold compared with control. In conclusion, the results demonstrate that exogenous PGCs are capable of migrating and settling in gonads from which endogenous PGCs have been removed using a busulfan sustained-release emulsion.


Sign in / Sign up

Export Citation Format

Share Document