The largest Cambrian animal, Anomalocaris , Burgess Shale, British-Columbia

Isolated specimens of the appendage Anomalocaris canadensis have long been known; a single incomplete specimen of an animal having a pair of these appendages attached anteriorly is described. Seven dorsoventrally compressed, partly complete individuals of a similar animal that had a different pair of appendages (‘F’ of Briggs 1979) attached anteriorly are described, together with two obliquely compressed individuals that are thought to be conspecific. Surrounding the mouth of this latter species is a circlet of plates identical with the supposed medusoid coelenterate Peytoia nathorsti ; this species is referred to Anomalocaris; Laggania is a junior synonym. As now understood, Anomalocaris was an animal that reached a length of 0.5 m, the elongate body having a head region bearing one pair of large, lateral eye lobes, each borne on a short stalk, the single pair of appendages attached at the ventral, anterior margin. The 13 segments of the appendage in A. canadensis bore paired spines on the inner side, short spines on the outer side, and there was a terminal, spinose 14th segment. The appendage in A. nathorsti consisted of 11 segments, the 2nd to 10th bearing on the inner side a graduated series of spinose blades, and spines on the lateral and outer sides, the terminal 11th segment ending in a group of spines. The circlet of plates surrounding the mouth was situated ventrally on the head region immediately behind the appendages; the plates bore teeth and the circlet constituted a jaw mechanism; additional groups of spines were present in the buccal cavity. Beneath the head region, behind the mouth, were three pairs of semicircular flaps, strongly overlapping: on the tapering trunk were 11 pairs of triangular lateral lobes, widest at the mid-length of the trunk, reduced progressively in size backward. These lobes were strongly overlapping in the same sense as the flaps on the head, and attached low on the sides. The trunk termination was short and blunt, without any projecting spine or lobe. Attached to the side of the body, above each flap and lateral lobe, was a multi-lamellar structure, apparently a gill. A thin cuticle covered the head region dorsally, and ventrally around the appendages and jaw circlet, behind this becoming a lateral strip that narrowed backward. It is suggested that a thin cuticle covered the trunk region dorsally and hung down beside the gills; this covering may have been continuous, but possibly was divided into tergites. Irregular patches of apatite, and some matrix, occur in the trace of the alimentary canal, which extended to the tip of the trunk. Mineralized patches occur in association with the gills, and as transverse strips, presumed traces of some internal organ or structure. The cuticle of the appendages and jaw circlet was presumably stout, hence these parts of the body were more resistant to decay and so were preserved in isolation. The thin cuticle of the lateral lobes shows rays which were presumably thicker and strengthening in function. We suggest that this animal, the largest known from Cambrian rocks, swam by using the series of closely spaced lateral lobes essentially as a lateral fin along which waves of motion were propagated. If the waves were moved in either the same, or opposite, sense on each side, considerable manoeuvrability would have resulted. The anterior pair of appendages, and jaw mechanism, would have made Anomalocaris a formidable predator, particularly on soft-bodied benthos including the abundant arthropods without a mineralized exoskeleton. No fragments of hard parts have been observed in the gut, but there is evidence that it may have inflicted wounds on trilobites. Anomalocaris was a metameric animal, and had one pair of jointed appendages and a unique circlet of jaw plates. We do not consider it an arthropod, but the representative of a hitherto unknown phylum. It is best known from A. nathorsti , the single specimen of A. canadensis having a different appendage but the rest of the body similar, probably including the jaw circlet. The evidence is insufficient to reach any conclusion on whether or not these two 'species' may be sexual dimorphs of a single species. The single specimen of Amiella ornata is redescribed. It shows what may be lateral lobes like those of Anomalcris, but other features unlike it. We conclude that this specimen is not an example of Sidneyia inexpectans , and is too incomplete for its relationship to be determined.

1954 ◽  
Vol 20 (2) ◽  
pp. 149-153
Author(s):  
Stig Rydén
Keyword(s):  
The Body ◽  

In 1952 I had the opportunity of investigating about 70 slab cists in the province of Munecas, Bolivia. Among the vessels found in the graves there were a few goblets provided with a tubular protuberance on one side. As my collections and personal outfit are still detained by the Bolivian authorities, the appearance of these vessels is illustrated here only by a drawing of a vessel taken over by the Museo Nacional “Tihuanacu,” La Paz (Fig. 50). A similar but undecorated vessel from the same region, Tacacacoma, is published by Schmidt (1929: 256, and Fig. 2). On the latter vessel the tubular protuberance is joined to the body of the goblet by two bare. Other minor variations in vessels of this type appear in the shape of the goblets and in the shape and placing of the tubular protuberance. Sometimes, for instance, the tube is longer than on the vessels depicted here and very often a raised human face is found on the outer side opposite the tube.


In many ways immunological tolerance is an ideal subject for discussion at the present time. Experimental work has gone far enough to allow us to claim that the principle of immunological tolerance is soundly established and that we can see more or less clearly some of its implications. But obviously very much remains to be learnt of the part played by tolerance in the various fields that have been discussed. It is by no means certain that we are dealing with a single topic when we compare tolerance to homografts with inhibition of antibody production against soluble protein in a rabbit. Such a situation provides much for discussion but does not make it easy to condense or interpret that discussion. One might begin by reiterating that immunology is concerned with much more than the production and properties of typical circulating antibody. There are at least four different types of immunological reaction and there are hints of many minor differences within the main types. Pappenheimer’s recent work on the variety of responses given by a single species, man, to a single purified antigen, diphtheria toxoid, offers a characteristic example of the current trend. Chase’s experiments on the response of guinea pigs to simple allergens like picryl chloride, have been only incidentally mentioned in today’s discussion, but their importance is obvious. A form of tolerance very similar to that produced by prenatal treatment of mice can be produced by administering the allergen to adult guinea-pigs by mouth. The animals are resistant to sensitization by skin treatment and the inhibition is general and unrelated to any persistence of allergen in the body. The question immediately arises whether all forms of tolerance are basically similar or whether for each of the qualitatively distinct types of positive immunological reaction, a correspondingly distinct type of inhibition or tolerance must be sought.


1875 ◽  
Vol 165 ◽  
pp. 549-575 ◽  

Mykiothela, of which we have as yet no satisfactory evidence of more than a single species being known, consists of a solitary attached hydranth, carrying near its proximal or attached end the blastostyles or appendages which give origin and support to the gonophores (Plate 55). Full-sized specimens (fig. 1) measure, when extended, nearly 2 inches in length. They are then cylindrical in form, with the mouth occupying the summit of a short conical hypostome, behind which the tentacles commence, and thence extend over somewhat more than one half the entire length of the body; while the proximal end of the body is bent at right angles to the rest, is invested with a chitinous perisarc, and gives origin to short sucker-like processes of attachment.


Radiotekhnika ◽  
2021 ◽  
pp. 100-107
Author(s):  
Al-Sudani Haider Ali Muse

The gyroscope is a device that makes it possible to measure the change in the orientation angles associated rotation of the body relative to an inertial coordinate system. Photonic crystal fiber gyroscopes are a kind of optical gyroscopes that offer many new features beyond that conventional fiber optic gyroscopes can offer. In any case, the properties of the optical fiber can play a large role in determining the characteristics of the gyroscope. The principle of operation of most optical gyroscopes is based on the Sagnac effect or the Sagnac interferometer, the essence of which is as follows. If two light waves propagate in a closed optical circuit in opposite directions, then in the case of an immovable circuit, the phase incursions of both waves that have passed the entire circuit in opposite directions will be the same. When the contour rotates around an axis normal to the contour plane, the phase incursions of the waves become unequal, and their difference in the general case will be proportional to the angular velocity of the contour rotation, the area covered by the contour, and the frequency of the electromagnetic wave (EMW). Since the area and frequency of the EMW remain unchanged during the operation of the gyroscope, the phase shift will be proportional only to the angular velocity. The use of photonic crystal fiber to increase the sensitivity is very promising; it significantly reduces the drift through thermal polarization, resistance, and the Kerr effect. This article suggests the use of photonic-crystal (hollow-core) fiber in optical gyroscope instead of conventional fibers.


2019 ◽  
Author(s):  
Marc HE de Lussanet

The contralateral organization of the forebrain and the crossing of the optic nerves in the optic chiasm represent a long-standing conundrum. According to the Axial Twist Hypothesis (ATH) the rostral head and the rest of the body are twisted with respect to each other to form a left-handed half turn. This twist is the result, mainly, of asymmetric, twisted growth in the early embryo. Evolutionary selection tends to restore bilateral symmetry. Since selective pressure will decrease as the organism approaches symmetry, we expected a small control error in the form of a small, residual right-handed twist. We found that the mouth-eyes-nose (rostral head) region shows a left-offset with respect to the ears (posterior head) by up to 0.8° (P<0.01, Bonferroni-corrected). Moreover, this systematic aurofacial asymmetry was larger in young children (on average up to 3°) and reduced with age. Finally, we predicted and found a right-sided bias for hugging (78%) and a left-sided bias for kissing (69%). Thus, all predictions were confirmed by the data. These results are all in support of the ATH, whereas the pattern of results is not explained by existing alternative theories. As of the present results, the ATH is the first theory for the contralateral forebrain and the optic chiasm whose predictions have been tested empirically. We conclude that humans (and all other vertebrates) are fundamentally asymmetric, both in their anatomy and their behavior. This supports the thesis that the approximate bilateral symmetry of vertebrates is a secondary feature, despite their being bilaterians.


2018 ◽  
Vol 10 (3) ◽  
pp. 841-846 ◽  
Author(s):  
S. Roy ◽  
K Roy ◽  
S. Sarkar ◽  
A Rathod ◽  
J. Hore

All the root inhabiting migratory endoparasitic nematode populations of Radopholus procured from banana crop of Vellayani, Thiruvananthapuram, Kerala were identified as Radopholus similis. Heat killed females were straight to slightly ventrally curved posteriorly. Female’s head was low, rounded, continuous or slightly setoff with the body contour. Females were 500-660 µm long and were comparatively longer than males. Males had button shaped head set off by a constriction; female with three to five lip annuli, four crenate and areolated lateral incisures, stylet 14-18 µm long with rounded knobs, vulva post-equatorial (58%), sometimes with slight protuberant lips, ovary paired and equally developed, oesophageal gland overlapped the intestine dorsally, tail elongate-conoid with narrowly rounded terminus. The stylet length (µm), width of stylet knob (µm), distance of excretory pore from anterior end (µm), distance from head to basal bulb (µm), lateral field structure, shape of stylet knob, head region, position of phasmid, tail shape with its terminus, morphometric values like m%, o% and v% and a, c and c´ ratios of females were stable (CV<12%) features. There is an existence of intra-specific variability in the morphological and morphometric features of R. similis. The main morphological diversity was observed with P% of male and female, b ratio of female and stylet length, distance of DEGO from stylet base, o% and T% of male. All the root inhabiting migratory endoparasitic nematode populations of Radopholus Thorne, 1949 procured from banana of Vellayani, Thiruvananthapuram, Kerala were identified as Radopholus similis (Cobb, 1893) Thorne, 1949. A high degree of intra-specific morphometric variability was observed with regard to the total body length (µm), body width (µm), stylet length (µm), distance of dosrsal oesophageal gland orifice (DEGO) from stylet base (µm), number of lip annuli, lip height (µm), distance from head to basal bulb (µm), distance of anus from anterior end (µm), tail length (µm), anal body width (µm), distance of phasmid from tail terminus (µm), number of lateral lines, width of lateral field (µm), b ratio and P % among females of R. similis. Morphometric features like m%, o% and v% of females of R. similis showed least variability. These can be considered as the stable morphometric characters for discrimination of females of R. similis. Ratios like ‘a’ and ‘c’ of females of R. similis were found moderately variable. The morphometric feature and of male i.e. distance from head to basal bulb (µm) was found least variable; while number of lip annuli and spicule length (µm) were moderately variable.  


2021 ◽  
Vol 9 ◽  
Author(s):  
Daniel Martin ◽  
Chiara Romano

To date, the genus Amphiduros (Annelida: Hesionidae: Amphidurine) is considered as monotypic. Its single species, Amphiduros fuscescens (Marenzeller, 1875), is well characterised by lacking proboscideal papillae and emerging acicular chaetae, as well as by having three antennae, eight pairs of tentacular cirri and inflated dorsal cirri with characteristic alternating length and colour (transparent, with median orange band and white tips) in live animals. Three specimens, one male and two females, were found below boulders at 5–7 m depth in Punta Santa Anna, Blanes and Cala Maset, Sant Feliu de Guixols (Catalan Sea, NW Mediterranean, Iberian Peninsula). Our finding allowed us to describe different, unreported morphological traits and lead us to support the existence of sexual dimorphism (in terms of colouring, cirri morphology and distribution of sexual products along the body). Despite A. fuscescens having been previously reported from the Atlantic and the Mediterranean (particularly in SE French coasts), the specimens from Blanes represent the first record of the species from the Iberian Peninsula. In addition, our molecular results strongly support that Amphiduros pacificus Hartman, 1961 from California (currently synonymised with A. fuscescens) requires to be re-described and reinstalled as a valid species. In turn, our morphological observations support suggesting all other non-Mediterranean reports of A. fuscescens, including the species still under synonymy (i.e. Amphidrornus izukai Hessle, 1925 and Amphidromus setosus Hessle, 1925) as likely being a cryptic species complex whose the taxonomic status requires further assessment.


1952 ◽  
Vol s3-93 (24) ◽  
pp. 435-452
Author(s):  
R. PHILLIPS DALES

Attention is drawn to the confusion which has been caused by the loose terminology of the anterior appendages in polychaetes, and more exact connotations are proposed. As the prostomium can be recognized as a comparable unit throughout the Polychaeta, a consideration of its constitution is deferred. In the present paper the development and constitution of the anterior region of the sabellariid worms are considered. The larval development of Phragmatopoma californica (representing the most highly advanced genus) is described, and the structure of the adult of this species is compared with that of species belonging to other genera. It is concluded that the opercular stalk arises mainly from the first segment; that the opercular paleae represent the notochaetae of the first two segments, and that the oral tentacles and the building organ are also developed from the first segment. The prostomium bears a single pair of tentacles.


1941 ◽  
Vol s2-82 (327) ◽  
pp. 467-540 ◽  
Author(s):  
F. SEGROVE

1. The larvae of Pomatoceros triqueter L. were obtained by artificial fertilization and reared through metamorphosis and for several months afterwards. Larval development took three weeks in summer, and about the same time in winter when the temperature was maintained at 65° F. 2. The eggs are small and give rise to typical trochosphere larvae with well-developed prototroch, metatroch, neurotroch, and feeding cilia, a spacious blastocoelic body-cavity and paired protonephridia. A head-vesicle and a conspicuous anal vesicle are also present. The right eye develops before the left. The larva is very active and grows rapidly at the expense of collected food material. 3. Three setigerous segments arise simultaneously; a fourth is added prior to metamorphosis. The lateral collar-folds develop in two capacious pockets which arise by invagination of the body-wall behind the metatroch, the ventral collar-fold by outgrowth of the ventral body-wall. The rudiments of the thoracic membrane appear above the lateral collar-folds. 4. Metamorphosis commences with the shrinkage of the locomotor apparatus, which leads to the exposure of the lateral collar-folds. The larva settles to the bottom and creeps about on its ventral surface by means of the neurotroch. The branchial crown arises as tripartite outgrowths on the sides of the head. The remaining tissues of the head, apart from the cerebral ganglion and eyes, are gradually resorbed. No tissue is thrown off. 5. The neurotroch gradually disappears and is replaced by cilia on the dorsal surface. The worm begins to secrete a calcareous tube. The resorption of the head is completed and the mouth assumes a terminal position surrounded by the branchial crown. 6. A fourth pair of filaments is added to the branchial crown. The dorsal pair of filaments develops into 'palps'. The third filament on the left side is modified as the operculum; the remaining filaments develop pinnules. 7. Further segments are added to the trunk. Those first added are of the thoracic type from the beginning. The eighth and succeeding setigers are of the abdominal type. The thoracic membrane gradually extends backwards to the posterior end of the thorax. 8. The thoracic nephridia arise as a single pair of cells which give rise to the dorsal unpaired duct by outgrowth. 9. The influence of the egg on the course of development is discussed. It is suggested: (a) that the small size of the egg is responsible for the active habits and protracted pelagic life of the larva; (b) that the mode of development of the collar is significant in that interference with the locomotor and feeding apparatus is thereby avoided; (c) that the general shrinkage which occurs at metamorphosis is related to a suspension of feeding activity in the period between the degeneration of the larval and the establishment of the adult feeding apparatus. 10. The development of Pomatoceros is compared with that of the Serpulid Psygmobranchus and the Sabeilid Branchiomma.


1978 ◽  
Vol 22 (04) ◽  
pp. 203-211
Author(s):  
Nils Salvesen ◽  
C. von Kerczek

Some nonlinear aspects of the two-dimensional problem of a submerged body moving with constant speed in otherwise undisturbed water of uniform depth are considered. It is shown that a theory of Benjamin which predicts a uniform rise of the free surface ahead of the body and the lowering of the mean level of the waves behind it agrees well with experimental data. The local steady-flow problem is solved by a numerical method which satisfies the exact free-surface conditions. Third-order perturbation formulas for the downstream free waves are also presented. It is found that in sufficiently shallow water, the wavelength increases with increasing disturbance strength for fixed values of the free-stream-Froude number. This is opposite to the deepwater case where the wavelength decreases with increasing disturbance strength.


Sign in / Sign up

Export Citation Format

Share Document