scholarly journals Spindle assembly checkpoint: the third decade

2011 ◽  
Vol 366 (1584) ◽  
pp. 3595-3604 ◽  
Author(s):  
Andrea Musacchio

The spindle assembly checkpoint controls cell cycle progression during mitosis, synchronizing it with the attachment of chromosomes to spindle microtubules. After the discovery of the mitotic arrest deficient ( MAD ) and budding uninhibited by benzymidazole ( BUB ) genes as crucial checkpoint components in 1991, the second decade of checkpoint studies (2001–2010) witnessed crucial advances in the elucidation of the mechanism through which the checkpoint effector, the mitotic checkpoint complex, targets the anaphase-promoting complex (APC/C) to prevent progression into anaphase. Concomitantly, the discovery that the Ndc80 complex and other components of the microtubule-binding interface of kinetochores are essential for the checkpoint response finally asserted that kinetochores are crucial for the checkpoint response. Nevertheless, the relationship between kinetochores and checkpoint control remains poorly understood. Crucial advances in this area in the third decade of checkpoint studies (2011–2020) are likely to be brought about by the characterization of the mechanism of kinetochore recruitment, activation and inactivation of checkpoint proteins, which remains elusive for the majority of checkpoint components. Here, we take a molecular view on the main challenges hampering this task.

Oncogene ◽  
2021 ◽  
Author(s):  
Lan Yu ◽  
Yue Lang ◽  
Ching-Cheng Hsu ◽  
Wei-Min Chen ◽  
Jui-Chung Chiang ◽  
...  

AbstractChromosomal instability (CIN) is a driving force for cancer development. The most common causes of CIN include the dysregulation of the spindle assembly checkpoint (SAC), which is a surveillance mechanism that prevents premature chromosome separation during mitosis by targeting anaphase-promoting complex/cyclosome (APC/C). DAB2IP is frequently silenced in advanced prostate cancer (PCa) and is associated with aggressive phenotypes of PCa. Our previous study showed that DAB2IP activates PLK1 and functions in mitotic regulation. Here, we report the novel mitotic phosphorylation of DAB2IP by Cdks, which mediates DAB2IP’s interaction with PLK1 and the activation of the PLK1-Mps1 pathway. DAB2IP interacts with Cdc20 in a phosphorylation-independent manner. However, the phosphorylation of DAB2IP inhibits the ubiquitylation of Cdc20 in response to SAC, and blocks the premature release of the APC/C-MCC. The PLK1-Mps1 pathway plays an important role in mitotic checkpoint complex (MCC) assembly. It is likely that DAB2IP acts as a scaffold to aid PLK1-Mps1 in targeting Cdc20. Depletion or loss of the Cdks-mediated phosphorylation of DAB2IP destabilizes the MCC, impairs the SAC, and increases chromosome missegregation and subsequent CIN, thus contributing to tumorigenesis. Collectively, these results demonstrate the mechanism of DAB2IP in SAC regulation and provide a rationale for targeting the SAC to cause lethal CIN against DAB2IP-deficient aggressive PCa, which exhibits a weak SAC.


2018 ◽  
Author(s):  
Cerys E. Currie ◽  
Mar Mora-Santos ◽  
Chris Smith ◽  
Andrew D. McAinsh ◽  
Jonathan B.A. Millar

AbstractError-free chromosome segregation during mitosis depends on a functional spindle assembly checkpoint (SAC). The SAC is a multi-component signaling system that is recruited to incorrectly attached kinetochores to catalyze the formation of a soluble inhibitor, known as the mitotic checkpoint complex (MCC), which binds and inhibits the anaphase promoting complex [1]. We have previously proposed that two separable pathways, composed of KNL1-Bub3-Bub1 (KBB) and Rod-Zwilch-Zw10 (RZZ), recruit Mad1-Mad2 complexes to human kinetochores to activate the SAC [2]. We refer to this as the dual pathway model. Although Bub1 is absolutely required for MCC formation in yeast (which lack RZZ), there is conflicting evidence as to whether this is also the case in human cells based on siRNA studies [2–5]. Here we report, using genome editing, that Bub1 is not strictly required for the SAC response to unattached kinetochores in human diploid hTERT-RPE1 cells, consistent with the dual pathway model.


2005 ◽  
Vol 25 (5) ◽  
pp. 2031-2044 ◽  
Author(s):  
Barbara C. M. van de Weerdt ◽  
Marcel A. T. M. van Vugt ◽  
Catherine Lindon ◽  
Jos J. W. Kauw ◽  
Marieke J. Rozendaal ◽  
...  

ABSTRACT Polo-like kinase 1 (Plk1) plays a role in numerous events in mitosis, but how the multiple functions of Plk1 are separated is poorly understood. We studied regulation of Plk1 through two putative phosphorylation residues, Ser-137 and Thr-210. Using phospho-specific antibodies, we found that Thr-210 phosphorylation precedes Ser-137 phosphorylation in vivo, the latter occurring specifically in late mitosis. We show that expression of two activating mutants of these residues, S137D and T210D, results in distinct mitotic phenotypes. Whereas expression of both phospho-mimicking mutants as well as of the double mutant leads to accelerated mitotic entry, further progression through mitosis is dramatically different: the T210D mutant causes a spindle assembly checkpoint-dependent delay, whereas the expression of the S137D mutant or the double mutant results in untimely activation of the anaphase-promoting complex/cyclosome (APC/C) and frequent mitotic catastrophe. Using nonphosphorylatable Plk1-S137A and Plk1-T210A mutants, we show that both sites contribute to proper mitotic progression. Based on these observations, we propose that Plk1 function is altered at different stages of mitosis through consecutive posttranslational events, e.g., at Ser-137 and Thr-210. Furthermore, our data show that uncontrolled Plk1 activation can uncouple APC/C activity from spindle assembly checkpoint control.


2016 ◽  
Vol 113 (4) ◽  
pp. 966-971 ◽  
Author(s):  
Sharon Kaisari ◽  
Danielle Sitry-Shevah ◽  
Shirly Miniowitz-Shemtov ◽  
Avram Hershko

The mitotic (or spindle assembly) checkpoint system prevents premature separation of sister chromatids in mitosis and thus ensures the fidelity of chromosome segregation. Kinetochores that are not attached properly to the mitotic spindle produce an inhibitory signal that prevents progression into anaphase. The checkpoint system acts on the Anaphase-Promoting Complex/Cyclosome (APC/C) ubiquitin ligase, which targets for degradation inhibitors of anaphase initiation. APC/C is inhibited by the Mitotic Checkpoint Complex (MCC), which assembles when the checkpoint is activated. MCC is composed of the checkpoint proteins BubR1, Bub3, and Mad2, associated with the APC/C coactivator Cdc20. The intermediary processes in the assembly of MCC are not sufficiently understood. It is also not clear whether or not some subcomplexes of MCC inhibit the APC/C and whether Mad2 is required only for MCC assembly and not for its action on the APC/C. We used purified subcomplexes of mitotic checkpoint proteins to examine these problems. Our results do not support a model in which Mad2 catalytically generates a Mad2-free APC/C inhibitor. We also found that the release of Mad2 from MCC caused a marked (although not complete) decrease in inhibitory action, suggesting a role of Mad2 in MCC for APC/C inhibition. A previously unknown species of MCC, which consists of Mad2, BubR1, and two molecules of Cdc20, contributes to the inhibition of APC/C by the mitotic checkpoint system.


2018 ◽  
Author(s):  
Lydia R Heasley ◽  
Jennifer G DeLuca ◽  
Steven M Markus

The Spindle Assembly Checkpoint (SAC) prevents erroneous chromosome segregation by delaying mitotic progression when chromosomes are incorrectly attached to the mitotic spindle. This delay is mediated by Mitotic Checkpoint Complexes (MCCs), which assemble at unattached kinetochores and repress the activity of the Anaphase Promoting Complex/Cyclosome (APC/C). The cellular localizations of MCCs are likely critical for proper SAC function, yet remain poorly defined. We recently demonstrated that in mammalian cells, in which the nuclear envelope disassembles during mitosis, MCCs diffuse throughout the spindle region and cytoplasm. Here, we employed binucleate yeast zygotes to examine the localization dynamics of SAC effectors required for MCC assembly and function in budding yeast, in which the nuclear envelope remains intact throughout mitosis. Our findings indicate that in yeast MCCs are confined to the nuclear compartment and excluded from the cytoplasm during mitosis. In contrast, we find that effectors of the Mitotic Exit Network (MEN) - a pathway that initiates disassembly of the anaphase spindle only when it is properly oriented - are in fact freely exchanged between multiple nuclei within a shared cytoplasm. Our study provides insight into how cell cycle checkpoints have evolved to function in diverse cellular contexts.


2009 ◽  
Vol 30 (2) ◽  
pp. 537-549 ◽  
Author(s):  
Jianjun Luo ◽  
Xinjing Xu ◽  
Hana Hall ◽  
Edel M. Hyland ◽  
Jef D. Boeke ◽  
...  

ABSTRACT It has been firmly established that many interphase nuclear functions, including transcriptional regulation, are regulated by chromatin and histones. How mitotic progression and quality control might be influenced by histones is less well characterized. We show that histone H3 plays a crucial role in activating the spindle assembly checkpoint in response to a defect in mitosis. Prior to anaphase, all chromosomes must attach to spindles emanating from the opposite spindle pole bodies. The tension between sister chromatids generated by the poleward pulling force is an integral part of chromosome biorientation. Lack of tension due to erroneous attachment activates the spindle assembly checkpoint, which corrects the mistakes and ensures segregation fidelity. A histone H3 mutation impairs the ability of yeast cells to activate the checkpoint in a tensionless crisis, leading to missegregation and aneuploidy. The defects in tension sensing result directly from an attenuated H3-Sgo1p interaction essential for pericentric recruitment of Sgo1p. Reinstating the pericentric enrichment of Sgo1p alleviates the mitotic defects. Histone H3, and hence the chromatin, is thus a key factor transmitting the tension status to the spindle assembly checkpoint.


2021 ◽  
Author(s):  
Anand Banerjee ◽  
Chu Chen ◽  
Lauren Humphrey ◽  
John J. Tyson ◽  
Ajit Joglekar

During mitosis, unattached kinetochores in a dividing cell generate the anaphase-inhibitory Mitotic Checkpoint Complex (MCC) to activate the Spindle Assembly Checkpoint (SAC) and delay anaphase onset. To generate MCC, these kinetochores recruit MCC constituent proteins including the protein BubR1. The increased local concentration of BubR1 resulting from this recruitment should enhance MCC generation, but prior studies found this not to be the case. We analyzed the contribution of two BubR1 recruitment pathways to MCC generation in human kinetochores. For these analyses, we isolated a subset of the MCC generation reactions to the cytosol using ectopic SAC activation systems. These analyses and mathematical modeling show that BubR1 binding to the SAC protein Bub1, but not to the 'KI' motifs in the kinetochore protein Knl1, significantly enhances the rate of Bub1-mediated MCC generation in the kinetochore. Our work also suggests that Bub1-BubR1 stoichiometry will strongly influence the dose-response characteristics of SAC signaling.


2020 ◽  
Author(s):  
Jamin Hein ◽  
Dimitriya H Garvanska ◽  
Isha Nasa ◽  
Arminja Kettenbach ◽  
Jakob Nilsson

Tight regulation of the APC/C-Cdc20 ubiquitin ligase that targets Cyclin B1 for degradation is important for mitotic fidelity. The spindle assembly checkpoint (SAC) inhibits Cdc20 through the mitotic checkpoint complex (MCC). In addition, phosphorylation of Cdc20 by Cyclin B1-Cdk1 independently inhibits APC/C-Cdc20 activation. This creates a conundrum for how Cdc20 gets activated prior to Cyclin B1 degradation. Here we show that the MCC component BubR1 harbours both Cdc20 inhibition and activation activities, allowing for cross-talk between the two Cdc20 inhibition pathways. Specifically BubR1 acts as a substrate specifier for PP2A-B56 to enable efficient Cdc20 dephosphorylation in the MCC. A mutant Cdc20 mimicking the dephosphorylated state escapes a mitotic checkpoint arrest arguing that restricting Cdc20 dephosphorylation to the MCC is important. Collectively our work reveals how Cdc20 can be dephosphorylated in the presence of Cyclin B1-Cdk1 activity without causing premature anaphase onset.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2097-2097
Author(s):  
Susanne Lub ◽  
Anke Maes ◽  
Ken Maes ◽  
Kim De Veirman ◽  
Xavier Leleu ◽  
...  

Abstract The discovery of novel agents such as the proteasome inhibitor bortezomib has significantly increased the survival of multiple myeloma (MM) patients. However MM remains an incurable disease mainly due to relapse, associated with significant resistance to therapy including bortezomib. Therefore further investigation to elucidate the disease and the mechanisms leading to drug resistance is necessary. The success of bortezomib highlights the importance of the ubiquitin-proteasomal system (UPS) in MM. The UPS regulates protein turnover and plays a key role is several cellular processes such as apoptosis, cell cycle progression, cell proliferation and DNA replication. The Anaphase Promoting Complex/Cyclosome (APC/C) is an E3 ubiquitin ligase protein complex involved in controlling cell cycle progression. The regulation of APC/C is dependent on 2 co-activators: Cdc20 and Cdh1. The APCCdc20 complex is controlling the metaphase to anaphase transition in mitosis, while APCCdh1 controls mitotic exit and early G1 phase. During metaphase, the activity of APCCdc20 is inhibited by the spindle assembly checkpoint. When all kinetochores are properly attached, the spindle assembly checkpoint is silenced and APCCdc20 becomes activated. When APCCdc20is active, cell cycle proteins are targeted for degradation by the proteasome such as securin and cyclin A and B leading to mitotic exit. Recent studies described that spindle assembly checkpoint is defective in MM cells and that patient samples after chemotherapy and at relapse displayed an increased chromosomal instability signature including Cdc20. The aim of our study is to elucidate the importance and therapeutic potential of APC/C and its co-activators Cdc20 and Cdh1 in MM. Analysis of gene expression in the data of Zhan et al. (Blood 108, 2020-8, 2006) revealed that the co-activator Cdc20 was higher expressed in certain MM sub-groups (PR, MS, CD1, MF) compared to healthy bone marrow plasma cells. Moreover, high Cdc20 expression is correlated with poor prognosis. Cdh1 on the other hand was significantly lower expressed in all MM sub-groups compared to healthy bone marrow plasma cells. Interestingly, lower Cdh1 expression is correlated with poor prognosis. Next, we analyzed whether blocking APC/C would affect MM cells. For this study the pro-drug of TAME (tosyl-L-arginine methyl ester) that has been described as an inhibitor of the APC/C, was used. When the human myeloma cell lines LP-1 and RPMI-8226 were treated with proTAME, an accumulation of the APCCdc20 substrate cyclin B1 was seen already after 6 hours. However the levels of Skp2, an APCCdh1 substrate, were not affected by proTAME treatment. This suggests that proTAME inhibits the APCCdc20 complex but not the APCCdh1complex. We morphologically assessed the effect on number of metaphases on May-Grünwald Giemsa stained cytospins. ProTAME clearly induced an accumulation of LP-1 and RPMI-8226 cells in metaphase. Since a metaphase arrest can lead to cell death, we investigated the effect of proTAME on the viability and apoptosis. A significant dose-dependent decrease in viability and increase in apoptosis was observed after treatment with proTAME of human myeloma cell lines and primary MM cells purified from human and 5T33MM diseased mice. In contrast, other cells from the bone marrow microenvironment were not affected upon proTAME treatment. The induction of apoptosis was accompanied with caspase 3, 8, 9 and PARP cleavage. Western Blot analysis also showed phosphorylation of H2AX suggesting DNA damage upon proTAME treatment. Previous studies showed that MM is a heterogeneous disease consisting of a bulk CD138+ population and a minor CD138- population which is less sensitivity to drugs such as bortezomib. Interestingly, treatment of CD138+/- 5T33MM cells with proTAME demonstrated an equal targeting of both populations. From these results we can conclude that overexpression of Cdc20 by MM cells is correlated with a bad prognosis. Inhibition of APCCdc20 results in a metaphase arrest in MM cells which is associated with reduced viability and induction of apoptosis. Moreover, APC/C inhibition equally targets CD138+ and the more resistant CD138- 5T33MM cells. This study suggests that APC/C and its co-activator Cdc20 could be a new and promising target in MM. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 20 (18) ◽  
pp. 4537 ◽  
Author(s):  
Lenka Radonova ◽  
Tereza Svobodova ◽  
Michal Skultety ◽  
Ondrej Mrkva ◽  
Lenka Libichova ◽  
...  

In both mitosis and meiosis, metaphase to anaphase transition requires the activity of a ubiquitin ligase known as anaphase promoting complex/cyclosome (APC/C). The activation of APC/C in metaphase is under the control of the checkpoint mechanism, called the spindle assembly checkpoint (SAC), which monitors the correct attachment of all kinetochores to the spindle. It has been shown previously in somatic cells that exposure to a small molecule inhibitor, prodrug tosyl-l-arginine methyl ester (proTAME), resulted in cell cycle arrest in metaphase, with low APC/C activity. Interestingly, some reports have also suggested that the activity of SAC is required for this arrest. We focused on the characterization of proTAME inhibition of cell cycle progression in mammalian oocytes and embryos. Our results show that mammalian oocytes and early cleavage embryos show dose-dependent metaphase arrest after exposure to proTAME. However, in comparison to the somatic cells, we show here that the proTAME-induced arrest in these cells does not require SAC activity. Our results revealed important differences between mammalian oocytes and early embryos and somatic cells in their requirements of SAC for APC/C inhibition. In comparison to the somatic cells, oocytes and embryos show much higher frequency of aneuploidy. Our results are therefore important for understanding chromosome segregation control mechanisms, which might contribute to the premature termination of development or severe developmental and mental disorders of newborns.


Sign in / Sign up

Export Citation Format

Share Document