scholarly journals A metaplasticity view of the interaction between homeostatic and Hebbian plasticity

2017 ◽  
Vol 372 (1715) ◽  
pp. 20160155 ◽  
Author(s):  
Ada X. Yee ◽  
Yu-Tien Hsu ◽  
Lu Chen

Hebbian and homeostatic plasticity are two major forms of plasticity in the nervous system: Hebbian plasticity provides a synaptic basis for associative learning, whereas homeostatic plasticity serves to stabilize network activity. While achieving seemingly very different goals, these two types of plasticity interact functionally through overlapping elements in their respective mechanisms. Here, we review studies conducted in the mammalian central nervous system, summarize known circuit and molecular mechanisms of homeostatic plasticity, and compare these mechanisms with those that mediate Hebbian plasticity. We end with a discussion of ‘local’ homeostatic plasticity and the potential role of local homeostatic plasticity as a form of metaplasticity that modulates a neuron's future capacity for Hebbian plasticity. This article is part of the themed issue ‘Integrating Hebbian and homeostatic plasticity’.

2016 ◽  
Author(s):  
Αθανάσιος Στεργιόπουλος

Το δυναμικό και η ικανότητα αυτο-ανανέωσης και διαφοροποίησης των νευρικών βλαστικών κυττάρων (ΝΒΚ) ελέγχονται από τη δράση διαφόρων μεταγραφικών παραγόντων και πυρηνικών υποδοχέων, επηρεάζοντας μ ’αυτόν τον τρόπο την ανάπτυξη και τη λειτουργία του κεντρικού νευρικού συστήματος (ΚΝΣ). Στην παρούσα μελέτη χαρακτηρίσαμε τον ορφανό πυρηνικό υποδοχέα NR5A2 (LRH1), ως ένα νέο μόριο το οποίο κατέχει κεντρικό αναπτυξιακό ρόλο στο ΚΝΣ. Με πειράματα υπερ-έκφρασης και αποσιώπησης γονιδίων σε πρωτογενή ΝΒΚ καθώς και με ανάλυση εμβρύων ποντικών στα οποία έχει επιτραπεί η ιστο-ειδική και χρονική εξάλειψη του NR5A2, δείξαμε πως ο NR5A2 είναι ικανός να διακόπτει τον πολλαπλασιασμό των ΝΒΚ, οδηγώντας τα προς τη νευρωνική διαφοροποίηση με την παράλληλη απώλεια των αστροκυττάρων. Σε μηχανιστική βάση, ο NR5A2 ελέγχει αυτούς τους φαινοτύπους μέσω της άμεσης επίδρασής του στον γενετικό τόπο του Ink4/Arf, στο Prox1, το οποίο αποτελεί καθοδικό στόχο των προ-νευρικών γονιδίων, καθώς επίσης και στα σηματοδοτικά μονοπάτια του Notch1 και του JAK/STAT. Αντιθέτως, ο NR5A2 ρυθμίζεται ανοδικά από προ-νευρικά γονίδια και από τα Notch1 και JAK/STAT μονοπάτια. Συμπερασματικά, οι παρατηρήσεις μας προτείνουν τον NR5A2 σαν ένα νέο υποδοχέα-ρυθμιστή της ανάπτυξης του ΚΝΣ, και, σε συνδυασμό με την ανακάλυψη αγωνιστών/ανταγωνιστών του, τον καθιστούν υποψήφιο στόχο στην ανάπτυξη θεραπευτικών στρατηγικών αναγεννητικής ιατρικής του ΚΝΣ.


Psychiatry ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 125-134
Author(s):  
E. F. Vasilyeva ◽  
O. S. Brusov

Background: at present, the important role of the monocyte-macrophage link of immunity in the pathogenesis of mental diseases has been determined. In the first and second parts of our review, the cellular and molecular mechanisms of activation of monocytes/macrophages, which secreting proinflammatory CD16 receptors, cytokines, chemokines and receptors to them, in the development of systemic immune inflammation in the pathogenesis of somatic diseases and mental disorders, including schizophrenia, bipolar affective disorder (BAD) and depression were analyzed. The association of high levels of proinflammatory activity of monocytes/macrophages in patients with mental disorders with somatic comorbidity, including immune system diseases, is shown. It is known that proinflammatory monocytes of peripheral blood, as a result of violation of the integrity of the hematoencephalic barrier can migrate to the central nervous system and activate the resident brain cells — microglia, causing its activation. Activation of microglia can lead to the development of neuroinammation and neurodegenerative processes in the brain and, as a result, to cognitive disorders. The aim of review: to analyze the results of the main scientific studies concerning the role of cellular and molecular mechanisms of peripheral blood monocytes interaction with microglial cells and platelets in the development of neuroinflammation in the pathogenesis of mental disorders, including Alzheimer’s disease (AD). Material and methods: keywords “mental disorders, AD, proinflammatory monocytes, microglia, neuroinflammation, cytokines, chemokines, cell adhesion molecules, platelets, microvesicles” were used to search for articles of domestic and foreign authors published over the past 30 years in the databases PubMed, eLibrary, Science Direct and EMBASE. Conclusion: this review analyzes the results of studies which show that monocytes/macrophages and microglia have similar gene expression profiles in schizophrenia, BAD, depression, and AD and also perform similar functions: phagocytosis and inflammatory responses. Monocytes recruited to the central nervous system stimulate the increased production of proinflammatory cytokines IL-1, IL-6, tumor necrosis factor alpha (TNF-α), chemokines, for example, MCP-1 (Monocyte chemotactic protein-1) by microglial cells. This promotes the recruitment of microglial cells to the sites of neuronal damage, and also enhances the formation of the brain protein beta-amyloid (Aβ). The results of modern studies are presented, indicating that platelets are involved in systemic inflammatory reactions, where they interact with monocytes to form monocyte-platelet aggregates (MTA), which induce the activation of monocytes with a pro inflammatory phenotype. In the last decade, it has been established that activated platelets and other cells of the immune system, including monocytes, detached microvesicles (MV) from the membrane. It has been shown that MV are involved as messengers in the transport of biologically active lipids, cytokines, complement, and other molecules that can cause exacerbation of systemic inflammatory reactions. The presented review allows us to expand our knowledge about the cellular and molecular aspects of the interaction of monocytes/macrophages with microglial cells and platelets in the development of neuroinflammation and cognitive decline in the pathogenesis of mental diseases and in AD, and also helps in the search for specific biomarkers of the clinical severity of mental disorder in patients and the prospects for their response to treatment.


2014 ◽  
Vol 10 (01) ◽  
pp. 48
Author(s):  
Dionysis Papadatos-Pastos ◽  
James Hall ◽  
Ruth Pettengell ◽  
Leslie R Bridges ◽  
Barry Newell ◽  
...  

We present a case of a 64-year-old man who was diagnosed with a primary anaplastic large cell lymphoma of the central nervous system (PCNSAL). He had received radical chemotherapy and radiotherapy for a non-small cell lung cancer (NSCLC) in the past. There is no known association between NSCLC and PCNSAL. We describe the diagnostic and therapeutic challenges associated with these rare intracranial lymphomas and highlight the potential role of newer biological agents in patients with anaplastic lymphoma kinase (ALK-1) positive PCNSAL.


2020 ◽  
Vol 21 ◽  
Author(s):  
Shvetank Bhatt ◽  
Jovita Kanoujia ◽  
Arghya Kusum Dhar ◽  
Surendar Arumugam ◽  
Amanda K. A. Silva ◽  
...  

Abstract: Extracellular vesicles (EVs) of endocytic origin are known as exosomes. These vesicles are released by cells and are accessible in biofluids, such as saliva, urine, and plasma. These vesicles are made up of small RNA, DNA, proteins and play a vital role in many physiological processes. In central nervous system (CNS), they participate in various physiological processes such as stress of nerve cells, communication between the cells, synaptic plasticity and neurogenesis. The role of exosomes in depression needs to be explored further. It is known that exosomes can cross blood brain barrier (BBB), which is made up of glial cells astrocytes. One of the advantages of these vescicles is that they are able to transfer macromolecules like DNA, protein, mRNAs and miRNAs to recipient cells. This review focuses on the potential role of exosomes in de-pression and their utilization as atreatmentoption or diagnostic tool of depression.


Antioxidants ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 121 ◽  
Author(s):  
Yonghee Kim ◽  
Jinhong Park ◽  
Yoon Kyung Choi

Astrocytes outnumber neurons in the human brain, and they play a key role in numerous functions within the central nervous system (CNS), including glutamate, ion (i.e., Ca2+, K+) and water homeostasis, defense against oxidative/nitrosative stress, energy storage, mitochondria biogenesis, scar formation, tissue repair via angiogenesis and neurogenesis, and synapse modulation. After CNS injury, astrocytes communicate with surrounding neuronal and vascular systems, leading to the clearance of disease-specific protein aggregates, such as β-amyloid, and α-synuclein. The astrocytic big conductance K+ (BK) channel plays a role in these processes. Recently, potential therapeutic agents that target astrocytes have been tested for their potential to repair the brain. In this review, we discuss the role of the BK channel and antioxidant agents such as heme oxygenase metabolites following CNS injury. A better understanding of the cellular and molecular mechanisms of astrocytes’ functions in the healthy and diseased brains will greatly contribute to the development of therapeutic approaches following CNS injury, such as Alzheimer’s disease, Parkinson’s disease, and stroke.


Sign in / Sign up

Export Citation Format

Share Document