scholarly journals Abandoning the ship using sex, dispersal or dormancy: multiple escape routes from challenging conditions

2018 ◽  
Vol 373 (1757) ◽  
pp. 20170424 ◽  
Author(s):  
Nina Gerber ◽  
Hanna Kokko

Natural populations often experience environments that vary across space and over time, leading to spatio-temporal variation of the fitness of a genotype. If local conditions are poor, organisms can disperse in space (physical movement) or time (dormancy, diapause). Facultatively sexual organisms can switch between asexual and sexual reproduction, and thus have a third option available to deal with maladaptedness: they can engage in sexual reproduction in unfavourable conditions (an ‘abandon-ship’ response). Sexual reproduction in facultatively sexual organisms is often coupled with dispersal and/or dormancy, while bet-hedging theory at first sight predicts sex, dispersal and dormancy to covary negatively, as they represent different escape mechanisms that could substitute for each other. Here we briefly review the observed links between sex, dormancy and dispersal, and model the expected covariation patterns of dispersal, dormancy and the reproductive mode in the context of local adaptation to spatio-temporally fluctuating environments. The correlations between sex, dormancy and dispersal evolve differently within species versus across species. Various risk-spreading strategies are not completely interchangeable, as each has dynamic consequences that can feed back into the profitability of others. Our results shed light on the discrepancy between previous theoretical predictions on covarying risk-spreading traits and help explain why sex often associates with other means of escaping unfavourable situations. This article is part of the theme issue ‘Linking local adaptation with the evolution of sex differences’.

Genetics ◽  
2022 ◽  
Vol 220 (1) ◽  
Author(s):  
Sam Yeaman

Abstract Observations about the number, frequency, effect size, and genomic distribution of alleles associated with complex traits must be interpreted in light of evolutionary process. These characteristics, which constitute a trait’s genetic architecture, can dramatically affect evolutionary outcomes in applications from agriculture to medicine, and can provide a window into how evolution works. Here, I review theoretical predictions about the evolution of genetic architecture under spatially homogeneous, global adaptation as compared with spatially heterogeneous, local adaptation. Due to the tension between divergent selection and migration, local adaptation can favor “concentrated” genetic architectures that are enriched for alleles of larger effect, clustered in a smaller number of genomic regions, relative to expectations under global adaptation. However, the evolution of such architectures may be limited by many factors, including the genotypic redundancy of the trait, mutation rate, and temporal variability of environment. I review the circumstances in which predictions differ for global vs local adaptation and discuss where progress can be made in testing hypotheses using data from natural populations and lab experiments. As the field of comparative population genomics expands in scope, differences in architecture among traits and species will provide insights into how evolution works, and such differences must be interpreted in light of which kind of selection has been operating.


2019 ◽  
Vol 47 (6) ◽  
pp. 1733-1747 ◽  
Author(s):  
Christina Klausen ◽  
Fabian Kaiser ◽  
Birthe Stüven ◽  
Jan N. Hansen ◽  
Dagmar Wachten

The second messenger 3′,5′-cyclic nucleoside adenosine monophosphate (cAMP) plays a key role in signal transduction across prokaryotes and eukaryotes. Cyclic AMP signaling is compartmentalized into microdomains to fulfil specific functions. To define the function of cAMP within these microdomains, signaling needs to be analyzed with spatio-temporal precision. To this end, optogenetic approaches and genetically encoded fluorescent biosensors are particularly well suited. Synthesis and hydrolysis of cAMP can be directly manipulated by photoactivated adenylyl cyclases (PACs) and light-regulated phosphodiesterases (PDEs), respectively. In addition, many biosensors have been designed to spatially and temporarily resolve cAMP dynamics in the cell. This review provides an overview about optogenetic tools and biosensors to shed light on the subcellular organization of cAMP signaling.


Heredity ◽  
1989 ◽  
Vol 63 (3) ◽  
pp. 395-400 ◽  
Author(s):  
V Boutin-Stadler ◽  
P Saumitou-Laprade ◽  
M Valero ◽  
R Jean ◽  
Ph Vernet

2018 ◽  
Author(s):  
F. Pina-Martins ◽  
J. Baptista ◽  
G. Pappas ◽  
O. S. Paulo

AbstractSpecies respond to global climatic changes in a local context. Understanding this process is paramount due to the pace of these changes. Tree species are particularly interesting to study in this regard due to their long generation times, sedentarism, and ecological and economic importance. Quercus suber L. is an evergreen forest tree species of the Fagaceae family with an essentially Western Mediterranean distribution. Despite frequent assessments of the species’ evolutionary history, large-scale genetic studies have mostly relied on plastidial markers, whereas nuclear markers have been used on studies with locally focused sampling strategies. The potential response of Q. suber to global climatic changes has also been studied, under ecological modelling. In this work, “Genotyping by Sequencing” (GBS) is used to derive 2,547 SNP markers to assess the species’ evolutionary history from a nuclear DNA perspective, gain insights on how local adaptation may be shaping the species’ genetic background, and to forecast how Q. suber may respond to global climatic changes from a genetic perspective. Results reveal an essentially unstructured species, where a balance between gene flow and local adaptation keeps the species’ gene pool somewhat homogeneous across its distribution, but at the same time allows variation clines for the individuals to cope with local conditions. “Risk of Non-Adaptedness” (RONA) analyses, suggest that for the considered variables and most sampled locations, the cork oak does not require large shifts in allele frequencies to survive the predicted climatic changes. However, more research is required to integrate these results with those of ecological modelling.


2018 ◽  
Author(s):  
Sara Marin ◽  
Juliette Archambeau ◽  
Vincent Bonhomme ◽  
Mylène Lascoste ◽  
Benoit Pujol

ABSTRACTPhenotypic differentiation among natural populations can be explained by natural selection or by neutral processes such as drift. There are many examples in the literature where comparing the effects of these processes on multiple populations has allowed the detection of local adaptation. However, these studies rarely identify the agents of selection. Whether population adaptive divergence is caused by local features of the environment, or by the environmental demand emerging at a more global scale, for example along altitudinal gradients, is a question that remains poorly investigated. Here, we measured neutral genetic (FST) and quantitative genetic (QST) differentiation among 13 populations of snapdragon plants (Antirrhinum majus) in a common garden experiment. We found low but significant genetic differentiation at putatively neutral markers, which supports the hypothesis of either ongoing pervasive homogenisation via gene flow between diverged populations or reproductive isolation between disconnected populations. Our results also support the hypothesis of local adaptation involving phenological, morphological, reproductive and functional traits. They also showed that phenotypic differentiation increased with altitude for traits reflecting the reproduction and the phenology of plants, thereby confirming the role of such traits in their adaptation to environmental differences associated with altitude. Our approach allowed us to identify candidate traits for the adaptation to climate change in snapdragon plants. Our findings imply that environmental conditions changing with altitude, such as the climatic envelope, influenced the adaptation of multiple populations of snapdragon plants on the top of their adaptation to local environmental features. They also have implications for the study of adaptive evolution in structured populations because they highlight the need to disentangle the adaptation of plant populations to climate envelopes and altitude from the confounding effects of selective pressures acting specifically at the local scale of a population.


Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 900
Author(s):  
Javier Quinto ◽  
María Eva Wong ◽  
Juan Ramón Boyero ◽  
José Miguel Vela ◽  
Martin Aguirrebengoa

The invasive chestnut gall wasp (CGW), Dryocosmus kuriphilus, the worst pest of chestnut cultivation, has spread worryingly throughout Europe in less than 20 years. Despite the great concern around this pest, little is known about the status in its southernmost distribution in continental Europe. We assessed spatio-temporal patterns in the population dynamics, phenology and tree damage caused by CGW in southern Spain. Likewise, the relationship between these variables and thermal trends was evaluated. We found strong variation in the population dynamics and flight phenology among localities and over time, which were highly influenced by changes in thermal regimes. Specifically, warmer localities and vegetative periods promoted higher population densities, a partial increase in the survival of immature stages, and advanced flight activity. Moreover, tree damage evolved differently over time in each locality, which suggests that local conditions may determine differences in damage evolution. Our findings evidence that great spatio-temporal variability in the CGW populations takes place across invaded areas in its southernmost European distributional range. Although control mechanisms have been introduced, implementation of further control and management measures are critical to cope with this main threat for the chestnut industry and to prevent its spread to nearing chestnut-producing areas.


Author(s):  
Zachariah Gompert ◽  
Lauren Lucas

Long term studies of wild populations indicate that natural selection can cause rapid and dramatic changes in traits, with spatial and temporal variation in the strength of selection a critical driver of genetic variation in natural populations. In 2012, we began a long term study of genome-wide molecular evolution in populations of the butterfly Lycaeides ideas in the Greater Yellowstone Area (GYA). We aimed to quantify the role of environment-dependent selection on evolution in these populations. Building on previous work, in 2017 we collected new samples, incorporated distance sampling, and surveyed the insect community at each site. We also defined the habitat boundary at anew, eleventh site. Our preliminary analyses suggest that both genetic drift and selection are important drivers in this system.   Featured photo from Figure 1 in report.


2014 ◽  
Vol 2 (1-2) ◽  
pp. 1-20
Author(s):  
Nur Yasemin Ural

The question of the death of a Muslim in France engenders a discussion on the forms and limits of secularisation in the public sphere. Contrary to other public institutions like schools, hospitals and prisons, the particularity of mortuary spaces lies in their nearly uncontested religious character, also recognised by the French state. Despite the fact that repatriation remains to be the dominant practice among French Muslims, the descending generations, who overtly declare their identities as Muslim and European at the same time, seek to obtain their place within the European public sphere. Yet accommodating deceased bodies of Muslims within the so-called secular cemeteries represents a real challenge in terms of space, recognition of religious identities and application of Islamic funerary rites. The regulations imposed by the French authorities seem to pose serious problems to Muslims, who desire to be buried in accordance with the requirements of their religion. In this respect the cemetery becomes a realm of spatio-temporal struggle, where subjectivities are formed via negotiations between the subjects—dead or alive—and state apparatuses. This article aims to reflect on the power struggles in the development of the mortuary space from a historical perspective. It will then attempt to shed light on the legal possibility of the construction of the only French Muslim cemetery inaugurated in Strasbourg in 2012.


Sign in / Sign up

Export Citation Format

Share Document