scholarly journals How can microbial population genomics inform community ecology?

2020 ◽  
Vol 375 (1798) ◽  
pp. 20190253 ◽  
Author(s):  
David VanInsberghe ◽  
Philip Arevalo ◽  
Diana Chien ◽  
Martin F. Polz

Populations are fundamental units of ecology and evolution, but can we define them for bacteria and archaea in a biologically meaningful way? Here, we review why population structure is difficult to recognize in microbes and how recent advances in measuring contemporary gene flow allow us to identify clearly delineated populations among collections of closely related genomes. Such structure can arise from preferential gene flow caused by coexistence and genetic similarity, defining populations based on biological mechanisms. We show that such gene flow units are sufficiently genetically isolated for specific adaptations to spread, making them also ecological units that are differentially adapted compared to their closest relatives. We discuss the implications of these observations for measuring bacterial and archaeal diversity in the environment. We show that operational taxonomic units defined by 16S rRNA gene sequencing have woefully poor resolution for ecologically defined populations and propose monophyletic clusters of nearly identical ribosomal protein genes as an alternative measure for population mapping in community ecological studies employing metagenomics. These population-based approaches have the potential to provide much-needed clarity in interpreting the vast microbial diversity in human and environmental microbiomes. This article is part of the theme issue ‘Conceptual challenges in microbial community ecology’.

Thorax ◽  
2019 ◽  
Vol 74 (6) ◽  
pp. 592-599 ◽  
Author(s):  
Laura Toivonen ◽  
Kohei Hasegawa ◽  
Matti Waris ◽  
Nadim J Ajami ◽  
Joseph F Petrosino ◽  
...  

BackgroundEmerging evidence shows that airway microbiota may modulate local immune responses, thereby contributing to the susceptibility and severity of acute respiratory infections (ARIs). However, there are little data on the longitudinal relationships between airway microbiota and susceptibility to ARIs in children.ObjectiveWe aimed to investigate the association of early nasal microbiota and the subsequent risk of ARIs during the first years of life.MethodsIn this prospective population-based birth-cohort study in Finland, we followed 839 healthy infants for ARIs from birth to age 24 months. Nasal microbiota was tested using 16S rRNA gene sequencing at age 2 months. We applied an unsupervised clustering approach to identify early nasal microbiota profiles, and examined the association of profiles with the rate of ARIs during age 2–24 months.ResultsWe identified five nasal microbiota profiles dominated by Moraxella, Streptococcus, Dolosigranulum, Staphylococcus and Corynebacteriaceae, respectively. Incidence rate of ARIs was highest in children with an early Moraxella-dominant profile and lowest in those with a Corynebacteriaceae-dominant profile (738 vs 552/100 children years; unadjusted incidence rate ratio (IRR), 1.34; 95% CI 1.16 to 1.54; p < 0.001). After adjusting for nine potential confounders, the Moraxella-dominant profile-ARI association persisted (adjusted IRR (aIRR), 1.19; 95% CI 1.04 to 1.37; p = 0.01). Similarly, the incidence rate of lower respiratory tract infections (a subset of all ARIs) was significantly higher in children with an early Moraxella-dominant profile (aIRR, 2.79; 95% CI 1.04 to 8.09; p = 0.04).ConclusionMoraxella-dominant nasal microbiota profile in early infancy was associated with an increased rate of ARIs during the first 2 years of life.


2019 ◽  
Author(s):  
Chaonan Fan ◽  
Shijie Li ◽  
Rui Wang ◽  
Xiuqin Fan ◽  
Aiming Liang ◽  
...  

Abstract There is little data on population-based identification of the gut microbiota with ADHD subtypes in children, yet whether the degree ADHD is characterized by short-chain fatty acids (SCFAs) remains unclear. We enrolled 59 ADHD children including 21 inattentive subtypes (ADHD-I), 20 combined subtypes (ADHD-C), 18 hyperactive-Impulsive subtypes (ADHD-H) and 23 healthy controls. The microbiota was characterized by 16S rRNA gene sequencing, and SCFA concentrations were determined by gas chromatographic analysis. Compared to the controls, we observed a decrease of 14 genera belonging to Ruminococcaceae, Lachnospiraceae, Verrucomicrobiaceae and Rikenellaceae family in ADHD-I, while Megamonas, Coprococcus_2 and Paraprevotella were significantly increased in ADHD-C. In addition, a lower abundance of Faecalibacterium, and a higher proportion of Marvinbryantia, Intestinimonas, Prevotella_9 and Eggerthella were detected in the ADHD-H. Analysis of fecal SCFAs showed that elevated levels of acetate and propionate were in ADHD subtypes. Furthermore, most of the bacterium associated with SCFAs overlapped with the differential bacterium in ADHD subtypes. Conclusion: Our data support the clinical distinction among different ADHD subtypes in children may also be reflected in alterations of specific gut microbiota, most of which are SCFA producing bacteria.


2019 ◽  
Vol 13 (1) ◽  
pp. 90-101
Author(s):  
Sanju Kumari ◽  
Utkarshini Sharma ◽  
Rohit Krishna ◽  
Kanak Sinha ◽  
Santosh Kumar

Background: Cellulolysis is of considerable economic importance in laundry detergents, textile and pulp and paper industries and in fermentation of biomass into biofuels. Objective: The aim was to screen cellulase producing actinobacteria from the fruit orchard because of its requirement in several chemical reactions. Methods: Strains of actinobacteria were isolated on Sabouraud’s agar medium. Similarities in cultural and biochemical characterization by growing the strains on ISP medium and dissimilarities among them perpetuated to recognise nine groups of actinobacteria. Cellulase activity was measured by the diameter of clear zone around colonies on CMC agar and the amount of reducing sugar liberated from carboxymethyl cellulose in the supernatant of the CMC broth. Further, 16S rRNA gene sequencing and molecular characterization were placed before NCBI for obtaining recognition with accession numbers. Results: Prominent clear zones on spraying Congo Red were found around the cultures of strains of three groups SK703, SK706, SK708 on CMC agar plates. The enzyme assay for carboxymethylcellulase displayed extra cellulase activity in broth: 0.14, 0.82 and 0.66 &#181;mol mL-1 min-1, respectively at optimum conditions of 35°C, pH 7.3 and 96 h of incubation. However, the specific cellulase activities per 1 mg of protein did not differ that way. It was 1.55, 1.71 and 1.83 μmol mL-1 min-1. The growing mycelia possessed short compact chains of 10-20 conidia on aerial branches. These morphological and biochemical characteristics, followed by their verification by Bergey’s Manual, categorically allowed the strains to be placed under actinobacteria. Further, 16S rRNA gene sequencing, molecular characterization and their evolutionary relationship through phylogenetics also confirmed the putative cellulase producing isolates of SK706 and SK708 subgroups to be the strains of Streptomyces. These strains on getting NCBI recognition were christened as Streptomyces glaucescens strain SK91L (KF527284) and Streptomyces rochei strain SK78L (KF515951), respectively. Conclusion: Conclusive evidence on the basis of different parameters established the presence of cellulase producing actinobacteria in the litchi orchard which can convert cellulose into fermentable sugar.


Life ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 254
Author(s):  
Ying Wang ◽  
Jianqing Zhu ◽  
Jie Fang ◽  
Li Shen ◽  
Shuojia Ma ◽  
...  

We characterized the gut microbial composition and relative abundance of gut bacteria in the larvae and adults of Pieris canidia by 16S rRNA gene sequencing. The gut microbiota structure was similar across the life stages and sexes. The comparative functional analysis on P. canidia bacterial communities with PICRUSt showed the enrichment of several pathways including those for energy metabolism, immune system, digestive system, xenobiotics biodegradation, transport, cell growth and death. The parameters often used as a proxy of insect fitness (development time, pupation rate, emergence rate, adult survival rate and weight of 5th instars larvae) showed a significant difference between treatment group and untreated group and point to potential fitness advantages with the gut microbiomes in P. canidia. These data provide an overall view of the bacterial community across the life stages and sexes in P. canidia.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Janis R. Bedarf ◽  
Naiara Beraza ◽  
Hassan Khazneh ◽  
Ezgi Özkurt ◽  
David Baker ◽  
...  

Abstract Background Recent studies suggested the existence of (poly-)microbial infections in human brains. These have been described either as putative pathogens linked to the neuro-inflammatory changes seen in Parkinson’s disease (PD) and Alzheimer’s disease (AD) or as a “brain microbiome” in the context of healthy patients’ brain samples. Methods Using 16S rRNA gene sequencing, we tested the hypothesis that there is a bacterial brain microbiome. We evaluated brain samples from healthy human subjects and individuals suffering from PD (olfactory bulb and pre-frontal cortex), as well as murine brains. In line with state-of-the-art recommendations, we included several negative and positive controls in our analysis and estimated total bacterial biomass by 16S rRNA gene qPCR. Results Amplicon sequencing did detect bacterial signals in both human and murine samples, but estimated bacterial biomass was extremely low in all samples. Stringent reanalyses implied bacterial signals being explained by a combination of exogenous DNA contamination (54.8%) and false positive amplification of host DNA (34.2%, off-target amplicons). Several seemingly brain-enriched microbes in our dataset turned out to be false-positive signals upon closer examination. We identified off-target amplification as a major confounding factor in low-bacterial/high-host-DNA scenarios. These amplified human or mouse DNA sequences were clustered and falsely assigned to bacterial taxa in the majority of tested amplicon sequencing pipelines. Off-target amplicons seemed to be related to the tissue’s sterility and could also be found in independent brain 16S rRNA gene sequences. Conclusions Taxonomic signals obtained from (extremely) low biomass samples by 16S rRNA gene sequencing must be scrutinized closely to exclude the possibility of off-target amplifications, amplicons that can only appear enriched in biological samples, but are sometimes assigned to bacterial taxa. Sequences must be explicitly matched against any possible background genomes present in large quantities (i.e., the host genome). Using close scrutiny in our approach, we find no evidence supporting the hypothetical presence of either a brain microbiome or a bacterial infection in PD brains.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Musa Saheed Ibrahim ◽  
Beckley Ikhajiagbe

Abstract Background Rice forms a significant portion of food consumed in most household worldwide. Rice production has been hampered by soil factors such as ferruginousity which has limited phosphorus availability; an important mineral component for the growth and yield of rice. The presence of phosphate-solubilizing bacteria (PSB) in soils has been reported to enhance phosphate availability. In view of this, the present study employed three bacteria species (BCAC2, EMBF2 and BCAF1) that were previously isolated and proved P solubilization capacities as inocula to investigate the growth response of rice germinants in an in vitro setup. The bacteria isolates were first identified using 16S rRNA gene sequencing and then applied as inoculum. The inolula were prepared in three concentrations (10, 7.5 and 5.0 ml) following McFarland standard. Viable rice (var. FARO 44) seeds were sown in petri dishes and then inoculated with the three inocula at the different concentrations. The setup was studied for 28 days. Results 16S rRNA gene sequencing identified the isolates as: isolate BCAC2= Bacillus cereus strain GGBSU-1, isolate BCAF1= Proteus mirabilis strain TL14-1 and isolate EMBF2= Klebsiella variicola strain AUH-KAM-9. Significant improvement in rice germination, morphology, physiology and biomass parameters in the bacteria-inoculated setups was observed compared to the control. Germination percentage after 4 days was 100 % in the inoculated rice germinants compared to 65% in the control (NiS). Similarly, inoculation with the test isolates enhanced water-use efficiency by over 40%. The rice seedlings inoculated with Bacillus cereus strain GGBSU-1 (BiS) showed no signs of chlorosis and necrosis throughout the study period as against those inoculated with Proteus mirabilis strain TL14-1 (PiS) and Klebsiella variicola strain AUH-KAM-9 (KiS). Significant increase in chlorophyll-a, chlorophyll-b and alpha amylase was observed in the rice seedlings inoculated with BiS as against the NiS. Conclusion Inoculating rice seeds with Bacillus cereus strain GGBSU-1, Proteus mirabilis strain TL14-1 and Klebsiella variicola strain AUH-KAM-9 in an in vitro media significantly improved growth parameters of the test plant. Bacillus cereus strain GGBSU-1 showed higher efficiency due to a more improved growth properties observed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vanessa Palmas ◽  
Silvia Pisanu ◽  
Veronica Madau ◽  
Emanuela Casula ◽  
Andrea Deledda ◽  
...  

AbstractIn the present study, we characterized the distinctive signatures of the gut microbiota (GM) from overweight/obese patients (OB), and normal-weight controls (NW), both of Sardinian origin. Fecal bacterial composition of 46 OB patients (BMI = 36.6 ± 6.0; F/M = 40/6) was analyzed and compared to that of 46 NW subjects (BMI = 21.6 ± 2.1; F/M = 41/5), matched for sex, age and smoking status, by using 16S rRNA gene sequencing on MiSeq Illumina platform. The gut microbial community of OB patients exhibited a significant decrease in the relative abundance of several Bacteroidetes taxa (i.e. Flavobacteriaceae, Porphyromonadaceae, Sphingobacteriaceae, Flavobacterium, Rikenella spp., Pedobacter spp., Parabacteroides spp., Bacteroides spp.) when compared to NW; instead, several Firmicutes taxa were significantly increased in the same subjects (Lachnospiraceae, Gemellaceae, Paenibacillaceae, Streptococcaceae, Thermicanaceae, Gemella, Mitsuokella, Streptococcus, Acidaminococcus spp., Eubacterium spp., Ruminococcus spp., Megamonas spp., Streptococcus, Thermicanus, Megasphaera spp. and Veillonella spp.). Correlation analysis indicated that body fatness and waist circumference negatively correlated with Bacteroidetes taxa, while Firmicutes taxa positively correlated with body fat and negatively with muscle mass and/or physical activity level. Furthermore, the relative abundance of several bacterial taxa belonging to Enterobacteriaceae family, known to exhibit endotoxic activity, was increased in the OB group compared to NW. The results extend our knowledge on the GM profiles in Italian OB, identifying novel taxa linking obesity and intestine.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shenhai Gong ◽  
Yinglin Feng ◽  
Yunong Zeng ◽  
Huanrui Zhang ◽  
Meiping Pan ◽  
...  

Abstract Background Gut microbiota has been reported to be disrupted by cisplatin, as well as to modulate chemotherapy toxicity. However, the precise role of intestinal microbiota in the pathogenesis of cisplatin hepatotoxicity remains unknown. Methods We compared the composition and function of gut microbiota between mice treated with and without cisplatin using 16S rRNA gene sequencing and via metabolomic analysis. For understanding the causative relationship between gut dysbiosis and cisplatin hepatotoxicity, antibiotics were administered to deplete gut microbiota and faecal microbiota transplantation (FMT) was performed before cisplatin treatment. Results 16S rRNA gene sequencing and metabolomic analysis showed that cisplatin administration caused gut microbiota dysbiosis in mice. Gut microbiota ablation by antibiotic exposure protected against the hepatotoxicity induced by cisplatin. Interestingly, mice treated with antibiotics dampened the mitogen-activated protein kinase pathway activation and promoted nuclear factor erythroid 2-related factor 2 nuclear translocation, resulting in decreased levels of both inflammation and oxidative stress in the liver. FMT also confirmed the role of microbiota in individual susceptibility to cisplatin-induced hepatotoxicity. Conclusions This study elucidated the mechanism by which gut microbiota mediates cisplatin hepatotoxicity through enhanced inflammatory response and oxidative stress. This knowledge may help develop novel therapeutic approaches that involve targeting the composition and metabolites of microbiota.


Sign in / Sign up

Export Citation Format

Share Document