XVIII. Researches on the geometrical properties of elliptic integrals

1852 ◽  
Vol 142 ◽  
pp. 311-416 ◽  

I. In placing before the Royal Society the following researches on the geometrical types of elliptic integrals, which nearly complete my investigations on this interesting subject, I may be permitted briefly to advert to what bad already been effected in this department of geometrical research. Legendre, to whom this important branch of mathematical science owes so much, devised a plane curve, whose rectification might be effected by an elliptic integral of the first order. Since that time many other geometers have followed his example, in contriving similar curves, to represent, either by their quadrature or rectification, elliptic functions. Of those who have been most successful in devising curves which should possess the required properties, may be mentioned M. Gudermann, M. Verhulst of Brussels, and M. Serret of Paris. These geometers however have succeeded in deriving from those curves scarcely any of the properties of elliptic integrals, even the most elementary. This barrenness in results was doubtless owing to the very artificial character of the genesis of those curves, devised, as they were, solely to satisfy one condition only of the general pro­blem. In 1841 a step was taken in the right direction. MM. Catalan and Gudermann, in the journals of Liouville and Crelle, showed how the arcs of spherical conic sec­tions might be represented by elliptic integrals of the third order and circular form. They did not, however, extend their investigations to the case of elliptic integrals of the third order and logarithmic form; nor even to that of the first order. These cases still remained, without any analogous geometrical representative, a blemish to the theory.

In this paper the author proposes to investigate the true geometrical basis of that entire class of algebraical expressions, known to mathematicians as elliptic functions or integrals. He sets out by showing what had already been done in this department of the subject by preceding geometers. That the elliptic integral of the second order represented an arc of a plane ellipse, was evident from the beginning.


2019 ◽  
pp. 107-116
Author(s):  
Karin Kukkonen

In the chapters that follow, the third-order probability design is developed. The third-order probability design revolves around how expectations about second- and first-order predictions are developed through structural patterns yielded by genre (III.1), textual gaps and shadow stories (III.2), and intertextual references to unfamiliar texts (III.3). The final chapter of the section, then, traces the tension between flexibility and constraint in probability designs.


2013 ◽  
Vol 141 (9) ◽  
pp. 3037-3051 ◽  
Author(s):  
Paul D. Williams

Abstract The leapfrog time-stepping scheme makes no amplitude errors when integrating linear oscillations. Unfortunately, the Robert–Asselin filter, which is used to damp the computational mode, introduces first-order amplitude errors. The Robert–Asselin–Williams (RAW) filter, which was recently proposed as an improvement, eliminates the first-order amplitude errors and yields third-order amplitude accuracy. However, it has not previously been shown how to further improve the accuracy by eliminating the third- and higher-order amplitude errors. Here, it is shown that leapfrogging over a suitably weighted blend of the filtered and unfiltered tendencies eliminates the third-order amplitude errors and yields fifth-order amplitude accuracy. It is further shown that the use of a more discriminating (1, −4, 6, −4, 1) filter instead of a (1, −2, 1) filter eliminates the fifth-order amplitude errors and yields seventh-order amplitude accuracy. Other related schemes are obtained by varying the values of the filter parameters, and it is found that several combinations offer an appealing compromise of stability and accuracy. The proposed new schemes are tested in numerical integrations of a simple nonlinear system. They appear to be attractive alternatives to the filtered leapfrog schemes currently used in many atmosphere and ocean models.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yanping Guo ◽  
Fei Yang

By using a fixed point theorem in a cone and the nonlocal third-order BVP's Green function, the existence of at least one positive solution for the third-order boundary-value problem with the integral boundary conditionsx′′′(t)+f(t,x(t),x′(t))=0,t∈J,x(0)=0,x′′(0)=0, andx(1)=∫01g(t)x(t)dtis considered, wherefis a nonnegative continuous function,J=[0,1], andg∈L[0,1].The emphasis here is thatfdepends on the first-order derivatives.


2013 ◽  
Vol 28 (06) ◽  
pp. 1350014 ◽  
Author(s):  
S. I. KRUGLOV

The wave equation for spinless particles with the Lorentz violating term is considered. We formulate the third-order in derivatives wave equation leading to the modified dispersion relation. The first-order formalism is considered and the density matrix is obtained. The Schrödinger form of equations is presented and the quantum-mechanical Hamiltonian is found. Exact solutions of the wave equation are obtained for particles in the constant and uniform external magnetic field. The change of the synchrotron radiation radius due to quantum gravity corrections is calculated.


The Abel Centennial Ceremony, held in Christiania, September, 1902, has directed the attention of mathematicians to the great influence of Abel on modern analysis, and. to the history of elliptic functions, and of the foundation by Crelle of the “ Journal für die reine und angewandte Mathematik.” Abel’s article in the first volume of ‘ Crelle’s Journal,' 1826, " Ueber die Integration der Differential-Formel ρdx ⁄ √R (A), wenn R und ρ gauze Functionen sind,” is of great importance as indicating the existence of what is now called the pseudo-elliptic integral; the present memoir is intended to show the utility of this integral in its application to mechanical theory.


1969 ◽  
Vol 47 (7) ◽  
pp. 699-705 ◽  
Author(s):  
C. S. Sharma ◽  
R. G. Wilson

The first-order Hartree–Fock and unrestricted Hartree–Fock equations for the ground state of a five electron atomic system are solved exactly. The solutions are used to evaluate the corresponding second-order energies exactly and the third-order energies with great accuracy. The first-order terms in the expectation values of 1/r, r, r2, and δ(r) are also calculated.


2022 ◽  
Author(s):  
Ren Bo ◽  
Shi Kai-Zhong ◽  
Shou-Feng Shen ◽  
Wang Guo-Fang ◽  
Peng Jun-Da ◽  
...  

Abstract In this paper, we investigate the third-order nonlinear Schr\"{o}dinger equation which is used to describe the propagation of ultrashort pulses in the subpicosecond or femtosecond regime. Based on the independent transformation, the bilinear form of the third-order NLSE is constructed. The multiple soliton solutions are constructed by solving the bilinear form. The multi-order rogue waves and interaction between one-soliton and first-order rogue wave are obtained by the long wave limit in multi-solitons. The dynamics of the first-order rogue wave, second-order rogue wave and interaction between one-soliton and first-order rogue wave are presented by selecting the appropriate parameters. In particular parameters, the positions and the maximum of amplitude of rogue wave can be confirmed by the detail calculations.PACS numbers: 02.30.Ik, 05.45.Yv.


2020 ◽  
Vol 2 (2) ◽  
pp. 184-189
Author(s):  
Andri Irfan Rifai ◽  
Finsa Aziz Fernanda

The increasing number of traffic accidents can be caused by drivers, vehicles, highways, and the environment. In Indonesia, traffic accidents become one of the problems in the transportation sector. Prevention is done during this time to anticipate accidents only based on the data of the accident quantity that has occurred. Though factors or incidents that can cause accidents to become the biggest contributor in the event of accidents. For example, driving a vehicle in an unorderly manner, the pace of the vehicle with the above-average velocity set traffic rules, and sudden vehicle maneuvers. This research is done by identifying and analyzing the behavior of motorcyclists who affect accidents and applying TCT methods to observation data at points that become potential locations Against accidents. The research location is on the Narogong Highway which is divided into 2 segments. In Segment 1 begins at junction four Cipendawa (after the flyover Simpang Cipendawa) until the junction of the three Gg. Sawo (Bantar Gebang Market). Next, in Segment 2 starts from junction three of Gg. Sawo (Bantar Gebang Market) until the three houses of Vida housing. The results showed that the research location had potential that could cause the accident to be front-side on the first order, collision front-front on the second-order, and side-by-side collision on the third order. The speed of vehicles has an impact on accidents.


Author(s):  
Chin-Chung Tsai ◽  
Ching Sing Chai

<span>Technology integration is a major trend in contemporary education practice. When undertaking technology integration in classrooms, a first-order barrier and a second-order barrier, as proposed by Ertmer (1999), can hinder its implementation. The first-order barrier is external, such as lack of adequate access, time, training and institutional support. The second-order barrier includes teachers' personal and fundamental beliefs such as teachers' pedagogical beliefs, technology beliefs, willingness to change. This paper argues that the lack of design thinking by teachers may be the "third"-order barrier for technology integration.</span>


Sign in / Sign up

Export Citation Format

Share Document