scholarly journals Measles virus-induced modulation of host-cell gene expression

2002 ◽  
Vol 83 (5) ◽  
pp. 1157-1165 ◽  
Author(s):  
Gert Bolt ◽  
Kurt Berg ◽  
Merete Blixenkrone-Møller

The influence of measles virus (MV) infection on gene expression by human peripheral blood mononuclear cells (PBMCs) was examined with cDNA microarrays. The mRNA levels of more than 3000 cellular genes were compared between uninfected PBMCs and cells infected with either the Edmonston MV strain or a wild-type MV isolate. The MV-induced upregulation of individual genes identified by microarray analyses was confirmed by RT–PCR. In the present study, a total of 17 genes was found to be upregulated by MV infection. The Edmonston strain grew better in the PBMC cultures than the wild-type MV, and the Edmonston strain was a stronger inducer of the upregulated host cell genes than the wild-type virus. The anti-apoptotic B cell lymphoma 3 (Bcl-3) protein and the transcription factor NF-κB p52 subunit were upregulated in infected PBMCs both at the mRNA and at the protein level. Several genes of the interferon system including that for interferon regulatory factor 7 were upregulated by MV. The genes for a number of chaperones, transcription factors and other proteins of the endoplasmic reticulum stress response were also upregulated. These included the gene for the pro-apoptotic and growth arrest-inducing CHOP/GADD153 protein. Thus, the present study demonstrated the activation by MV of cellular mechanisms and pathways that may play a role in the pathogenesis of measles.

2008 ◽  
Vol 82 (11) ◽  
pp. 5359-5367 ◽  
Author(s):  
Patricia Devaux ◽  
Gregory Hodge ◽  
Michael B. McChesney ◽  
Roberto Cattaneo

ABSTRACT Patients recruited in virus-based cancer clinical trials and immunocompromised individuals in need of vaccination would profit from viral strains with defined attenuation mechanisms. We generated measles virus (MV) strains defective for the expression of either the V protein, a modulator of the innate immune response, or the C protein, which has multiple functions. The virulence of these strains was compared with that of the parental wild-type MV in a natural host, Macaca mulatta. Skin rash, viremia, and the strength of the innate and adaptive immune responses were characterized in groups of six animals. Replication of V- or C-protein-defective viruses was short-lived and reached lower levels in peripheral blood mononuclear cells and lymphatic organs compared to the wild-type virus; none of the mutants reverted to the wild type. The neutralizing antibody titers and MV-specific T-cell responses were equivalent in monkeys infected with the viral strains tested, documenting strong adaptive immune responses. In contrast, the inflammatory response was better controlled by wild-type MV, as revealed by inhibition of interleukin-6 and tumor necrosis factor alpha transcription. The interferon response was also better controlled by the wild-type virus than by the defective viruses. Since V- and C-defective MVs induce strong adaptive immune responses while spreading less efficiently, they may be developed as vaccines for immunocompromised individuals. Moreover, MV unable to interact with single innate immunity proteins may be developed for preferential replication in tumors with specific contexts of vulnerability.


2000 ◽  
Vol 74 (16) ◽  
pp. 7478-7484 ◽  
Author(s):  
Denise Naniche ◽  
Annie Yeh ◽  
Danelle Eto ◽  
Marianne Manchester ◽  
Robert M. Friedman ◽  
...  

ABSTRACT Measles is a highly contagious disease currently responsible for over one million childhood deaths, particularly in the developing world. Since alpha/beta interferons (IFNs) are pivotal players both in nonspecific antiviral immunity and in specific cellular responses, their induction or suppression by measles virus (MV) could influence the outcome of a viral infection. In this study we compare the IFN induction and sensitivity of laboratory-passaged attenuated MV strains Edmonston and Moraten with those of recent wild-type viruses isolated and passaged solely on human peripheral blood mononuclear cells (PBMC) or on the B958 marmoset B-cell line. We report that two PBMC-grown wild-type measles isolates and two B958-grown strains of MV induce 10- to 80-fold-lower production of IFN by phytohemagglutinin-stimulated peripheral blood lymphocytes (PBL) compared to Edmonston and Moraten strains of measles. Preinfection of PBL with these non-IFN-inducing MV isolates prevents Edmonston-induced but not double-stranded-RNA-induced IFN production. This suggests that the wild-type viruses can actively inhibit Edmonston-induced IFN synthesis and that this is not occurring by double-stranded RNA. Furthermore, the wild-type MV is more sensitive than Edmonston MV to the effect of IFN. MV is thus able to suppress the synthesis of the earliest mediator of antiviral immunity, IFN-α/β. This could have important implications in the virulence and spread of MV.


2005 ◽  
Vol 86 (12) ◽  
pp. 3349-3355 ◽  
Author(s):  
J. Heaney ◽  
S. L. Cosby ◽  
T. Barrett

Rinderpest, or cattle plague, is caused by Rinderpest virus (RPV), which is related most closely to human Measles virus (MV), both being members of the genus Morbillivirus, a group of viruses known to have strong immunosuppressive effects in vitro and in vivo. Here, it was shown that peripheral blood mononuclear cells (PBMCs) isolated from cattle experimentally infected with either wild-type or vaccine strains of RPV impaired the proliferation of PBMCs derived from uninfected animals; however, in contrast to either mild or virulent strains of wild-type virus, the inhibition induced by the vaccine was both weak and transient. Flow-cytometric analysis of PBMCs obtained from cattle infected with different strains of RPV showed that the proportion of infected cells was virus dose-dependent and correlated with lymphoproliferative suppression.


Blood ◽  
1996 ◽  
Vol 87 (1) ◽  
pp. 331-340
Author(s):  
WE Kaminski ◽  
E Jendraschak ◽  
K Baumann ◽  
R Kiefl ◽  
S Fischer ◽  
...  

Lipoxygenases (LXs) catalyze formation of leukotrienes and hydroxy-eicosatetraenoic acids (HETEs), proinflammatory, and spasmogenic autacoids that are critical for host defense systems. We studied the expression and regulation of LX genes (12-LX, 5-LX, and 15-LX) and the 5-lipoxygenase activating protein (FLAP) in human mononuclear cells (MNC) and granulocytes using a quantitative reverse transcription polymerase chain reaction (RT-PCR) technique. We show that 12-LX mRNA is constitutively expressed in resting platelet-free MNC. 12-LX gene expression was upregulated by activation with lipopolysaccharide (LPS). The formation of 12-HETE was inducible with ionophore in MNC, as assessed by high-performance liquid chromatography (HPLC) and gas chromatography, and increased after LPS pretreatment. In addition to 12- LX, resting MNC expressed the genes for 5-LX and FLAP constitutively. Quantitative time course analyses of 12-LX, 5-LX, and FLAP gene expression suggested coregulation of 12-LX and FLAP mRNAs, and reciprocal regulation of 5-LX and FLAP mRNAs. During cell stimulation with LPS 5-LX mRNA levels remained unchanged, whereas FLAP gene expression increased. No 15-LX mRNA expression or 15-HETE formation was detectable in unstimulated and activated MNC. In contrast to MNC, quantitative RT-PCR mRNA analysis showed intermittent intraindividual expression of the 5-LX and FLAP genes in resting granulocytes. mRNAs for 12-LX and 15-LX were not expressed. On stimulation of granulocytes ex vivo, mRNA expression of 5-LX and FLAP was upregulated. Stimulation by LPS differed from that by ionophore A23187. Neither LPS nor ionophore induced gene expression of 12-LX or 15-LX in granulocytes. Our data indicate that resting human MNC and granulocytes express LX and FLAP genes in a cell-specific manner. Cell activation induces coordinated upregulation of 12-LX and FLAP genes in MNC, and 5-LX and FLAP genes in granulocytes, respectively. The constitutive expression of 12-LX mRNA, its upregulation on cell activation, and the formation of 12-HETE clearly indicate the presence of a functional 12-LX in human MNC.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Long-Hui Cui ◽  
Jung-Suk Kim ◽  
Hyung Joon Joo ◽  
Seung-Cheol Choi ◽  
Jong-Ho Kim ◽  
...  

Background: Recently, biophysical cues from nano patterned surface received extra attention. Because, numerous cells in the human body is surrounded by the nano-microenvironment. Especially for the live cells biophysical cues from nanotopography is an important factor for cell motility and pathophysiology. Human Endothelial Colony Forming Cells (hECFCs) is human peripheral blood mononuclear cells (PBMNCs) derived endothelial cell like cells which related with various disease occurrence. Methods: To investigate the effect of biophysical cues from nano size pillar surface, we use the novel nano size pillar surface culture dish in this experiment. The diameter size of nano pillar is 120nm to 360nm and we separate the gradient topography as High (280nm-360nm), Middle (200nm-280nm) and Low (120nm-200nm) respectively. hECFCs was derived from human peripheral blood mononuclear cells (hPBMNCs) and cultured with EGM2-MV endothelial medium. Results: Attachment of hECFCs was decreased on the High (280nm-360nm) nano size pillar area. But, proliferation and apoptosis of hECFCs on the nano size pillar surface has no significant difference with hECFCs on the flat pattern. However, single cell morphology of hECFCs on the nano size pillar surface was distinct compared with hECFCs on the flat pattern. Finally, gene expression level of ROCK, Rho and Integrin family has changed on the nano size pillar surface. Conclusion: In this study we find that biophysical cues from nano size pillar surface can affect single cell morphology of hECFC and gene expression level. Further, through these several results we can know that ROCK family are related with biophysical cues from nanotopography and nano pillar diameter size can affect the optimal culture condition for hECFC.


Blood ◽  
1996 ◽  
Vol 87 (1) ◽  
pp. 331-340 ◽  
Author(s):  
WE Kaminski ◽  
E Jendraschak ◽  
K Baumann ◽  
R Kiefl ◽  
S Fischer ◽  
...  

Abstract Lipoxygenases (LXs) catalyze formation of leukotrienes and hydroxy-eicosatetraenoic acids (HETEs), proinflammatory, and spasmogenic autacoids that are critical for host defense systems. We studied the expression and regulation of LX genes (12-LX, 5-LX, and 15-LX) and the 5-lipoxygenase activating protein (FLAP) in human mononuclear cells (MNC) and granulocytes using a quantitative reverse transcription polymerase chain reaction (RT-PCR) technique. We show that 12-LX mRNA is constitutively expressed in resting platelet-free MNC. 12-LX gene expression was upregulated by activation with lipopolysaccharide (LPS). The formation of 12-HETE was inducible with ionophore in MNC, as assessed by high-performance liquid chromatography (HPLC) and gas chromatography, and increased after LPS pretreatment. In addition to 12- LX, resting MNC expressed the genes for 5-LX and FLAP constitutively. Quantitative time course analyses of 12-LX, 5-LX, and FLAP gene expression suggested coregulation of 12-LX and FLAP mRNAs, and reciprocal regulation of 5-LX and FLAP mRNAs. During cell stimulation with LPS 5-LX mRNA levels remained unchanged, whereas FLAP gene expression increased. No 15-LX mRNA expression or 15-HETE formation was detectable in unstimulated and activated MNC. In contrast to MNC, quantitative RT-PCR mRNA analysis showed intermittent intraindividual expression of the 5-LX and FLAP genes in resting granulocytes. mRNAs for 12-LX and 15-LX were not expressed. On stimulation of granulocytes ex vivo, mRNA expression of 5-LX and FLAP was upregulated. Stimulation by LPS differed from that by ionophore A23187. Neither LPS nor ionophore induced gene expression of 12-LX or 15-LX in granulocytes. Our data indicate that resting human MNC and granulocytes express LX and FLAP genes in a cell-specific manner. Cell activation induces coordinated upregulation of 12-LX and FLAP genes in MNC, and 5-LX and FLAP genes in granulocytes, respectively. The constitutive expression of 12-LX mRNA, its upregulation on cell activation, and the formation of 12-HETE clearly indicate the presence of a functional 12-LX in human MNC.


Sign in / Sign up

Export Citation Format

Share Document