scholarly journals Use of an excision reporter plasmid to study the intracellular mobility of the conjugative transposon Tn916 in Gram-positive bacteria

Microbiology ◽  
1997 ◽  
Vol 143 (4) ◽  
pp. 1253-1261 ◽  
Author(s):  
J. Celli ◽  
C. Poyart ◽  
P. Trieu-Cuot
2005 ◽  
Vol 71 (8) ◽  
pp. 4930-4934 ◽  
Author(s):  
Yanping Wang ◽  
Gui-Rong Wang ◽  
Nadja B. Shoemaker ◽  
Terence R. Whitehead ◽  
Abigail A. Salyers

ABSTRACT The ermG gene was first found in the soil bacterium Bacillus sphaericus. More recently, it was found in several human intestinal Bacteroides species. We report here the first finding of ermG genes in gram-positive bacteria isolated from porcine feces and from under-barn manure pits used to store porcine wastes. The porcine ermG sequences were identical to the sequence of the B. sphaericus ermG gene except that six of the seven ermG-containing strains contained an insertion sequence element insertion in the C-terminal end of the gene. The porcine ermG genes were found in three different gram-positive genera, an indication that it is possible that the gene is being spread by horizontal gene transfer. A segment of a Bacteroides conjugative transposon that carries an ermG gene cross-hybridized with DNA from six of the seven porcine isolates, but the restriction patterns in the porcine strains were different from that of the Bacteroides conjugative transposon.


2003 ◽  
Vol 69 (11) ◽  
pp. 6455-6463 ◽  
Author(s):  
Anamika Gupta ◽  
Hera Vlamakis ◽  
Nadja Shoemaker ◽  
Abigail A. Salyers

ABSTRACT The erythromycin resistance gene ermB has been found in a variety of gram-positive bacteria. This gene has also been found in Bacteroides species but only in six recently isolated strains; thus, the gene seems to have entered this genus only recently. One of the six Bacteroides ermB-containing isolates, WH207, could transfer ermB to Bacteroides thetaiotaomicron strain BT4001 by conjugation. WH207 was identified as a Bacteroides uniformis strain based on the sequence of its 16S rRNA gene. Results of pulsed-field gel electrophoresis experiments demonstrated that the transferring element was normally integrated into the Bacteroides chromosome. The element was estimated from pulsed-field gel data to be about 100 kb in size. Since the element appeared to be a conjugative transposon (CTn), it was designated CTnBST. CTnBST was able to mobilize coresident plasmids and the circular form of the mobilizable transposon NBU1 to Bacteroides and Escherichia coli recipients. A 13-kb segment that contained ermB was cloned and sequenced. Most of the open reading frames in this region had little similarity at the amino acid sequence level to any proteins in the sequence databases, but a 1,723-bp DNA segment that included a 950-bp segment downstream of ermB had a DNA sequence that was virtually identical to that of a segment of DNA found previously in a Clostridium perfringens strain. This finding, together with the finding that ermB is located on a CTn, supports the hypothesis that CTnBST could have entered Bacteroides from some other genus, possibly from gram-positive bacteria. Moreover, this finding supports the hypothesis that many transmissible antibiotic resistance genes in Bacteroides are carried on CTns.


2003 ◽  
Vol 69 (8) ◽  
pp. 4595-4603 ◽  
Author(s):  
Yanping Wang ◽  
Gui-Rong Wang ◽  
Aikiesha Shelby ◽  
Nadja B. Shoemaker ◽  
Abigail A. Salyers

ABSTRACT Results of a recent study of antibiotic resistance genes in human colonic Bacteroides strains suggested that gene transfer events between members of this genus are fairly common. The identification of Bacteroides isolates that carried an erythromycin resistance gene, ermG, whose DNA sequence was 99% identical to that of an ermG gene found previously only in gram-positive bacteria raised the further possibility that conjugal elements were moving into Bacteroides species from other genera. Six of seven ermG-containing Bacteroides strains tested were able to transfer ermG by conjugation. One of these strains was chosen for further investigation. Results of pulsed-field gel electrophoresis experiments showed that the conjugal element carrying ermG in this strain is an integrated element about 75 kb in size. Thus, the element appears to be a conjugative transposon (CTn) and was designated CTnGERM1. CTnGERM1 proved to be unrelated to the predominant type of CTn found in Bacteroides isolates—CTns of the CTnERL/CTnDOT family—which sometimes carry another type of erm gene, ermF. A 19-kbp segment of DNA from CTnGERM1 was cloned and sequenced. A 10-kbp portion of this segment hybridized not only to DNA from all the ermG-containing strains but also to DNA from strains that did not carry ermG. Thus, CTnGERM1 seems to be part of a family of CTns, some of which have acquired ermG. The percentage of G+C content of the ermG region was significantly lower than that of the chromosome of Bacteroides species—an indication that CTnGERM1 may have entered Bacteroides strains from some other bacterial genus. A survey of strains isolated before 1970 and after 1990 suggests that the CTnGERM1 type of CTn entered Bacteroides species relatively recently. One of the genes located upstream of ermG encoded a protein that had 85% amino acid sequence identity with a macrolide efflux pump, MefA, from Streptococcus pyogenes. Our having found >90% sequence identity of two upstream genes, including mefA, and the remnants of two transposon-carried genes downstream of ermG with genes found previously only in gram-positive bacteria raises the possibility that gram-positive bacteria could have been the origin of CTnGERM1.


2007 ◽  
Vol 73 (13) ◽  
pp. 4226-4233 ◽  
Author(s):  
David J. Schlesinger ◽  
Nadja B. Shoemaker ◽  
Abigail A. Salyers

ABSTRACT A previous survey of Bacteroides isolates suggested that the ermB gene entered Bacteroides spp. recently. Previously, ermB had been found almost exclusively in gram-positive bacteria. In one Bacteroides strain, ermB was located on 100-kb conjugative transposon (CTn) CTnBST. To assess the possible origin of this CTn, we obtained the full DNA sequence of CTnBST and used this information to investigate its possible origins. Over one-half of CTnBST had high sequence identity to a putative CTn found in the genome of Bacteroides fragilis YCH46. This included the ends of the CTn and genes involved in integration, transfer, and excision. However, the region around the ermB gene contained genes that appeared to originate from gram-positive organisms. In particular, a 7-kb segment containing the ermB gene was 100% identical to an ermB region found in the genome of the gram-positive bacterium Arcanobacterium pyogenes. A screen of Bacteroides isolates whose DNA cross-hybridized with a CTnBST probe revealed that several isolates did not carry the 7-kb region, implying that the acquisition of this region may be more recent than the acquisition of the entire CTnBST element by Bacteroides spp. We have also identified other Bacteroides isolates that carry a slightly modified 7-kb region but have no other traces of CTnBST. Thus, it is possible that this 7-kb region could itself be part of a mobile element that has inserted in a Bacteroides CTn. Our results show that CTnBST is a hybrid element which has acquired a portion of its coding region from gram-positive bacteria but which may originally have come from Bacteroides spp. or some related species.


1997 ◽  
Vol 161 ◽  
pp. 491-504 ◽  
Author(s):  
Frances Westall

AbstractThe oldest cell-like structures on Earth are preserved in silicified lagoonal, shallow sea or hydrothermal sediments, such as some Archean formations in Western Australia and South Africa. Previous studies concentrated on the search for organic fossils in Archean rocks. Observations of silicified bacteria (as silica minerals) are scarce for both the Precambrian and the Phanerozoic, but reports of mineral bacteria finds, in general, are increasing. The problems associated with the identification of authentic fossil bacteria and, if possible, closer identification of bacteria type can, in part, be overcome by experimental fossilisation studies. These have shown that not all bacteria fossilise in the same way and, indeed, some seem to be very resistent to fossilisation. This paper deals with a transmission electron microscope investigation of the silicification of four species of bacteria commonly found in the environment. The Gram positiveBacillus laterosporusand its spore produced a robust, durable crust upon silicification, whereas the Gram negativePseudomonas fluorescens, Ps. vesicularis, andPs. acidovoranspresented delicately preserved walls. The greater amount of peptidoglycan, containing abundant metal cation binding sites, in the cell wall of the Gram positive bacterium, probably accounts for the difference in the mode of fossilisation. The Gram positive bacteria are, therefore, probably most likely to be preserved in the terrestrial and extraterrestrial rock record.


Author(s):  
B.K. Ghosh

Periplasm of bacteria is the space outside the permeability barrier of plasma membrane but enclosed by the cell wall. The contents of this special milieu exterior could be regulated by the plasma membrane from the internal, and by the cell wall from the external environment of the cell. Unlike the gram-negative organism, the presence of this space in gram-positive bacteria is still controversial because it cannot be clearly demonstrated. We have shown the importance of some periplasmic bodies in the secretion of penicillinase from Bacillus licheniformis.In negatively stained specimens prepared by a modified technique (Figs. 1 and 2), periplasmic space (PS) contained two kinds of structures: (i) fibrils (F, 100 Å) running perpendicular to the cell wall from the protoplast and (ii) an array of vesicles of various sizes (V), which seem to have evaginated from the protoplast.


Author(s):  
Jacob S. Hanker ◽  
Paul R. Gross ◽  
Beverly L. Giammara

Blood cultures are positive in approximately only 50 per cent of the patients with nongonococcal bacterial infectious arthritis and about 20 per cent of those with gonococcal arthritis. But the concept that gram-negative bacteria could be involved even in chronic arthritis is well-supported. Gram stains are more definitive in staphylococcal arthritis caused by gram-positive bacteria than in bacterial arthritis due to gram-negative bacteria. In the latter situation where gram-negative bacilli are the problem, Gram stains are helpful for 50% of the patients; they are only helpful for 25% of the patients, however, where gram-negative gonococci are the problem. In arthritis due to gram-positive Staphylococci. Gramstained smears are positive for 75% of the patients.


Author(s):  
Elaf Ayad Kadhem ◽  
Miaad Hamzah Zghair ◽  
Sarah , Hussam H. Tizkam, Shoeb Alahmad Salih Mahdi ◽  
Hussam H. Tizkam ◽  
Shoeb Alahmad

magnesium oxide nanoparticles (MgO NPs) were prepared by simple wet chemical method using different calcination temperatures. The prepared NPs were characterized by Electrostatic Discharge (ESD), Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD). It demonstrates sharp intensive peak with the increase of crystallinty and increase of the size with varying morphologies with respect to increase of calcination temperature. Antibacterial studies were done on gram negative bacteria (E.coli) and gram positive bacteria (S.aureus) by agar disc diffusion method. The zones of inhibitions were found larger for gram positive bacteria than gram negative bacteria, this mean, antibacterial MgO NPs activity more active on gram positive bacteria than gram negative bacteria because of the structural differences. It was found that antibacterial activity of MgO NPs was found it has directly proportional with their concentration.


Sign in / Sign up

Export Citation Format

Share Document