scholarly journals Stenotrophomonas maltophilia as a rare cause of meningitis and ventriculoperitoneal shunt infection

2021 ◽  
Vol 3 (10) ◽  
Author(s):  
Adarsh Manuel ◽  
Akarsh Jayachandran ◽  
Srinivasan Harish ◽  
Thenozhi Sunil ◽  
Vishnu Das K. R. ◽  
...  

Stenotrophomonas maltophilia is an extremely rare pathogen responsible for ventriculoperitoneal shunt infection and meningitis. This young female patient with history of multiple shunt revisions in the past, came to us with shunt dysfunction and exposure of the ventriculoperitoneal shunt tube in the neck. The abdominal end of the shunt tube was seen migrating into the bowel during shunt revision. The cerebrospinal fluid analysis showed evidence of Stenotrophomonas maltophilia growth. This is the first reported case of Stenotrophomonas maltophilia meningitis associated with ventriculoperitoneal shunt migration into the bowel.

2021 ◽  
Vol 7 (7) ◽  
Author(s):  
Prashant P. Patil ◽  
Sanjeet Kumar ◽  
Amandeep Kaur ◽  
Samriti Midha ◽  
Kanika Bansal ◽  
...  

Stenotrophomonas maltophilia is a typical example of an environmental originated opportunistic human pathogen, which can thrive at different habitats including the human body and can cause a wide range of infections. It must cope with heat stress during transition from the environment to the human body as the physiological temperature of the human body (37 °C) is higher than environmental niches (22–30 °C). Interestingly, S. rhizophila a phylogenetic neighbour of S. maltophilia within genus Stenotrophomonas is unable to grow at 37 °C. Thus, it is crucial to understand how S. maltophilia is adapted to human body temperature, which could suggest its evolution as an opportunistic human pathogen. In this study, we have performed comparative transcriptome analysis of S. maltophilia grown at 28 and 37 °C as temperature representative for environmental niches and the human body, respectively. RNA-Seq analysis revealed several interesting findings showing alterations in gene-expression levels at 28 and 37 °C, which can play an important role during infection. We have observed downregulation of genes involved in cellular motility, energy production and metabolism, replication and repair whereas upregulation of VirB/D4 type IV secretion system, aerotaxis, cation diffusion facilitator family transporter and LacI family transcriptional regulators at 37 °C. Microscopy and plate assays corroborated altered expression of genes involved in motility. The results obtained enhance our understanding of the strategies employed by S. maltophilia during adaptation towards the human body.


Author(s):  
Eliana Alcaraz ◽  
Daniela Centrón ◽  
Gabriela Camicia ◽  
María Paula Quiroga ◽  
José Di Conza ◽  
...  

Introduction. Stenotrophomonas maltophilia has emerged as one of the most common multi-drug-resistant pathogens isolated from people with cystic fibrosis (CF). However, its adaptation over time to CF lungs has not been fully established. Hypothesis. Sequential isolates of S. maltophilia from a Brazilian adult patient are clonally related and show a pattern of adaptation by loss of virulence factors. Aim. To investigate antimicrobial susceptibility, clonal relatedness, mutation frequency, quorum sensing (QS) and selected virulence factors in sequential S. maltophilia isolates from a Brazilian adult patient attending a CF referral centre in Buenos Aires, Argentina, between May 2014 and May 2018. Methodology. The antibiotic resistance of 11 S. maltophilia isolates recovered from expectorations of an adult female with CF was determined. Clonal relatedness, mutation frequency, QS variants (RpfC–RpfF), QS autoinducer (DSF) and virulence factors were investigated in eight viable isolates. Results. Seven S. maltophilia isolates were resistant to trimethoprim–sulfamethoxazole and five to levofloxacin. All isolates were susceptible to minocycline. Strong, weak and normomutators were detected, with a tendency to decreased mutation rate over time. XbaI PFGE revealed that seven isolates belong to two related clones. All isolates were RpfC–RpfF1 variants and DSF producers. Only two isolates produced weak biofilms, but none displayed swimming or twitching motility. Four isolates showed proteolytic activity and amplified stmPr1 and stmPr2 genes. Only the first three isolates were siderophore producers. Four isolates showed high resistance to oxidative stress, while the last four showed moderate resistance. Conclusion. The present study shows the long-time persistence of two related S. maltophilia clones in an adult female with CF. During the adaptation of the prevalent clones to the CF lungs over time, we identified a gradual loss of virulence factors that could be associated with the high amounts of DSF produced by the evolved isolates. Further, a decreased mutation rate was observed in the late isolates. The role of all these adaptations over time remains to be elucidated from a clinical perspective, probably focusing on the damage they can cause to CF lungs.


Microbiology ◽  
2021 ◽  
Vol 167 (7) ◽  
Author(s):  
Atsushi Hisatomi ◽  
Yuh Shiwa ◽  
Nobuyuki Fujita ◽  
Hiroyuki Koshino ◽  
Naoto Tanaka

Siderophores are produced by several bacteria that utilise iron in various environments. Elucidating the structure of a specific siderophore may have valuable applications in drug development. Stenotrophomonas maltophilia , a Gram-negative bacterium that inhabits a wide range of environments and can cause pneumonia, produces siderophores. However, the structure was unknown, and therefore, in this study, we aimed to elucidate it. We purified siderophores from cultures of S. maltophilia K279a using preparative reversed-phase HPLC. The structure was analysed through LC-MS and 1H and 13C NMR. The results demonstrated that S. maltophilia K279a produces 2,3-dihydroxybenzoylserine (DHBS), a monomer unit of enterobactin. We suggested the uptake of Iron(III) by the DHBS complex. DHBS production by S. maltophilia K279a could be attributed to an incomplete enterobactin pathway. Drugs targeting DHBS synthesis could prevent S. maltophilia infection.


2019 ◽  
Vol 24 (1) ◽  
pp. 61-65
Author(s):  
Eric R. Gregory ◽  
Sam B. Osborne ◽  
Brian M. Gardner ◽  
Robert A. Broughton

Stenotrophomonas maltophilia is an increasingly prevalent cause of nosocomial infections. This report describes a 5-month-old male diagnosed with a S maltophilia ventriculoperitoneal shunt infection after a neurosurgical procedure. Intravenous trimethoprim/sulfamethoxazole and moxifloxacin successfully treated the patient. A literature review revealed a scarcity of similar reports, with none using moxifloxacin as an effective concomitant treatment with trimethoprim-sulfamethoxazole.


2021 ◽  
Vol 70 (4) ◽  
Author(s):  
Takae Shimizu ◽  
Yuzo Tsuyuki ◽  
Kenta Shimoike ◽  
Keita Iyori ◽  
Tadashi Miyamoto ◽  
...  

As the representative multidrug-resistant pathogen, Stenotrophomonas maltophilia has multiple intrinsic and acquired resistances, including carbapenem resistance. In companion animals, the antimicrobial susceptibility and sequence types (STs) of S. maltophilia are not well understood due to its limited isolation rate. We investigated the antimicrobial susceptibilities and multilocus sequence types (MLSTs) of 38  S . maltophilia strains isolated from dogs and cats in Japan. Prevalence of resistance was detected for imipenem (100 %), aztreonam (94.7 %), piperacillin (65.8 %), trimethoprim–sulfamethoxazole (65.8 %), and ceftazidime (60.5 %). Rates of resistances to chloramphenicol, minocycline, and levofloxacin were low (2.6–5.3 %). MLST analysis revealed that all 38 strains were assigned to 34 STs, including 11 previously reported STs and 23 newly identified STs. Phylogenetic analysis of MLSTs enabled categorization of 13 isolates (34.2 %) into genogroup 6, which is a major genogroup of human isolates. Multinational surveillance would be needed to clarify the significance of antimicrobial-resistant S. maltophilia isolates from companion animals.


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3877-3884 ◽  
Author(s):  
Celine De Maesschalck ◽  
Filip Van Immerseel ◽  
Venessa Eeckhaut ◽  
Siegrid De Baere ◽  
Margo Cnockaert ◽  
...  

Strains LMG 27428T and LMG 27427 were isolated from the caecal content of a chicken and produced butyric, lactic and formic acids as major metabolic end products. The genomic DNA G+C contents of strains LMG 27428T and LMG 27427 were 40.4 and 38.8 mol%. On the basis of 16S rRNA gene sequence similarity, both strains were most closely related to the generically misclassified Streptococcus pleomorphus ATCC 29734T. Strain LMG 27428T could be distinguished from S. pleomorphus ATCC 29734T based on production of more lactic acid and less formic acid in M2GSC medium, a higher DNA G+C content and the absence of activities of acid phosphatase and leucine, arginine, leucyl glycine, pyroglutamic acid, glycine and histidine arylamidases, while strain LMG 27428 was biochemically indistinguishable from S. pleomorphus ATCC 29734T. The novel genus Faecalicoccus gen. nov. within the family Erysipelotrichaceae is proposed to accommodate strains LMG 27428T and LMG 27427. Strain LMG 27428T ( = DSM 26963T) is the type strain of Faecalicoccus acidiformans sp. nov., and strain LMG 27427 ( = DSM 26962) is a strain of Faecalicoccus pleomorphus comb. nov. (type strain LMG 17756T = ATCC 29734T = DSM 20574T). Furthermore, the nearest phylogenetic neighbours of the genus Faecalicoccus are the generically misclassified Eubacterium cylindroides DSM 3983T (94.4 % 16S rRNA gene sequence similarity to strain LMG 27428T) and Eubacterium biforme DSM 3989T (92.7 % 16S rRNA gene sequence similarity to strain LMG 27428T). We present genotypic and phenotypic data that allow the differentiation of each of these taxa and propose to reclassify these generically misnamed species of the genus Eubacterium formally as Faecalitalea cylindroides gen. nov., comb. nov. and Holdemanella biformis gen. nov., comb. nov., respectively. The type strain of Faecalitalea cylindroides is DSM 3983T = ATCC 27803T = JCM 10261T and that of Holdemanella biformis is DSM 3989T = ATCC 27806T = CCUG 28091T.


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1819-1824 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Chul-Hyung Kang ◽  
Song-Gun Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, aerobic and pleomorphic bacterium, designated BS-W13T, was isolated from a tidal flat on the South Sea, South Korea, and its taxonomic position was investigated using a polyphasic approach. Strain BS-W13T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 1.0–2.0 % (w/v) NaCl. Neighbour-joining and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain BS-W13T clustered with the type strain of Seohaeicola saemankumensis , showing the highest sequence similarity (95.96 %) to this strain. Strain BS-W13T exhibited 16S rRNA gene sequence similarity values of 95.95, 95.91, 95.72 and 95.68 % to the type strains of Sulfitobacter donghicola , Sulfitobacter porphyrae , Sulfitobacter mediterraneus and Roseobacter litoralis , respectively. Strain BS-W13T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The polar lipid profile of strain BS-W13T, containing phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid as major components, was distinguishable from those of some phylogenetically related taxa. The DNA G+C content of strain BS-W13T was 58.1 mol%. The phylogenetic data and differential chemotaxonomic and other phenotypic properties revealed that strain BS-W13T constitutes a novel genus and species within family Rhodobacteraceae of the class Alphaproteobacteria , for which the name Pseudoseohaeicola caenipelagi gen. nov., sp. nov. is proposed. The type strain is BS-W13T ( = KCTC 42349T = CECT 8724T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1149-1154 ◽  
Author(s):  
Varsha Kale ◽  
Snædís H. Björnsdóttir ◽  
Ólafur H. Friðjónsson ◽  
Sólveig K. Pétursdóttir ◽  
Sesselja Ómarsdóttir ◽  
...  

A thermophilic, aerobic, Gram-stain-negative, filamentous bacterium, strain PRI-4131T, was isolated from an intertidal hot spring in Isafjardardjup, NW Iceland. The strain grew chemo-organotrophically on various carbohydrates. The temperature range for growth was 40–65 °C (optimum 55 °C), the pH range was pH 6.5–9.0 (optimum pH 7.0) and the NaCl range was 0–3 % (w/v) (optimum 0.5 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain PRI-4131T represented a distinct lineage within the class Caldilineae of the phylum Chloroflexi. The highest levels of sequence similarity, about 91 %, were with Caldilinea aerophila STL-6-O1T and Caldilinea tarbellica D1-25-10-4T. Fermentative growth was not observed for strain PRI-4131T, which, in addition to other characteristics, distinguished it from the two Caldilinea species. Owing to both phylogenetic and phenotypic differences from the described members of the class Caldilineae , we propose to accommodate strain PRI-4131T in a novel species in a new genus, Litorilinea aerophila gen. nov., sp. nov. The type strain of Litorilinea aerophila is PRI-4131T ( = DSM 25763T  = ATCC BAA-2444T).


2012 ◽  
Vol 62 (Pt_11) ◽  
pp. 2589-2592 ◽  
Author(s):  
Hyo-Jin Lee ◽  
Song-Ih Han ◽  
Kyung-Sook Whang

A novel actinobacterium, designated strain BR-34T, was isolated from rhizosphere soil of bamboo (Phyllostachys nigro var. henonis) sampled in Damyang, Korea. The strain was found to have morphological and chemotaxonomic characteristics typical of the genus Catenulispora . The strain contained iso-C16 : 0 as the major fatty acid and MK-9(H4), MK-9(H6) and MK-9(H8) as major isoprenoid quinones. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain BR-34T formed a cluster separate from members of the genus Catenulispora and was related most closely to Catenulispora acidiphila ID139908T (97.4 % similarity), Catenulispora rubra Aac-30T (97.3 %), Catenulispora yoronensis TT N02-20T (97.3 %) and Catenulispora subtropica TT 99-48T (97 %). However, the level of DNA–DNA relatedness between strain BR-34T and C. acidiphila ID139908T was only 45.32 %. Based on DNA–DNA relatedness, morphological and phenotypic data, strain BR-34T could be distinguished from the type strains of phylogenetically related species. It is therefore considered to represent a novel species of the genus Catenulispora , for which the name Catenulispora graminis sp. nov. is proposed. The type strain is BR-34T ( = KACC 15070T = NBRC 107755T).


2013 ◽  
Vol 63 (Pt_9) ◽  
pp. 3280-3286 ◽  
Author(s):  
Iris Kuo ◽  
Jimmy Saw ◽  
Durrell D. Kapan ◽  
Stephanie Christensen ◽  
Kenneth Y. Kaneshiro ◽  
...  

Strain IK-1T was isolated from decaying tissues of the shrub Wikstroemia oahuensis collected on O‘ahu, Hawai‘i. Cells were rods that stained Gram-negative. Gliding motility was not observed. The strain was oxidase-negative and catalase-positive. Zeaxanthin was the major carotenoid. Flexirubin-type pigments were not detected. The most abundant fatty acids in whole cells of IK-1T grown on R2A were iso-C15 : 0 and one or both of C16 : 1ω7c and C16 : 1ω6c. Based on comparisons of the nucleotide sequence of the 16S rRNA gene, the closest neighbouring type strains were Flavobacterium rivuli WB 3.3-2T and Flavobacterium subsaxonicum WB 4.1-42T, with which IK-1T shares 93.84 and 93.67 % identity, respectively. The G+C content of the genomic DNA was 44.2 mol%. On the basis of distance from its nearest phylogenetic neighbours and phenotypic differences, the species Flavobacterium akiainvivens sp. nov. is proposed to accommodate strain IK-1T ( = ATCC BAA-2412T = CIP 110358T) as the type strain. The description of the genus Flavobacterium is emended to reflect the DNA G+C contents of Flavobacterium akiainvivens IK-1T and other species of the genus Flavobacterium described since the original description of the genus.


Sign in / Sign up

Export Citation Format

Share Document