Rhodovulum steppense sp. nov., an obligately haloalkaliphilic purple nonsulfur bacterium widespread in saline soda lakes of Central Asia

2010 ◽  
Vol 60 (5) ◽  
pp. 1210-1214 ◽  
Author(s):  
Elena I. Kompantseva ◽  
Anastasia V. Komova ◽  
Nadezhda A. Kostrikina

Seven strains of purple nonsulfur bacteria isolated from the shallow-water steppe soda lakes of the cryoarid zone of Central Asia formed a genetically homogeneous group within the genus Rhodovulum. The isolates were most closely related to Rhodovulum strictum, from which they differed at the species level (99.5 % 16S rRNA gene identity and 42–44 % DNA–DNA hybridization level). According to genotypic and phenotypic characteristics, the strains were assigned to a new species of the genus Rhodovulum, for which the name Rhodovulum steppense sp. nov. is proposed. Cells of all strains were ovoid to rod-shaped, 0.3–0.8 μm wide and 1–2.5 μm long, and motile by means of polar flagella. They contained internal photosynthetic membranes of the vesicular type and photosynthetic pigments (bacteriochlorophyll a and carotenoids of the spheroidene series). All strains were obligate haloalkaliphiles, growing within a wide range of salinity (0.3–10 %) and pH (7.5–10), with growth optima at 1–5 % NaCl and pH 8.5. Photo- and chemoheterotrophic growth occurred with a number of organic compounds and biotin, thiamine and niacin as growth factors. No anaerobic respiration on nitrite, nitrate or fumarate and no fermentation was demonstrated. Bacteria grew photo- and chemolithoautotrophically with sulfide, sulfur and thiosulfate, oxidizing them to sulfate. Sulfide was oxidized via deposition of extracellular elemental sulfur. No growth with H2 as electron donor was demonstrated. The major fatty acid was 18 : 1 (81.0 %). The major quinone was Q-10. The DNA G+C content was 66.1 mol% (T m). The type strain, A-20sT (=VKM B-2489T =DSM 21153T), was isolated from soda lake Khilganta (Zabaikal'skii Krai, southern Siberia, Russia).

2012 ◽  
Vol 62 (Pt_12) ◽  
pp. 2962-2966 ◽  
Author(s):  
Elena I. Kompantseva ◽  
Anastasia V. Komova ◽  
Andrey A. Novikov ◽  
Nadezhda A. Kostrikina

Two strains of purple non-sulfur bacteria (A-36sT and A-51s) were isolated from brackish steppe soda lakes of southern Siberia. Genetically, the isolates were related most closely to the type strains of Rhodovulum steppense and Rhodovulum strictum , from which they differed at the species level (98.5 % 16S rRNA gene sequence similarity, 40–53 % DNA–DNA relatedness). Cells of the two strains were ovoid to rod-shaped, 0.4–0.8 µm wide and 1.0–2.5 µm long, and motile by means of a polar flagellum. They contained internal photosynthetic membranes of vesicular type and photosynthetic pigments (bacteriochlorophyll a and carotenoids of the spheroidene series). The strains were obligate haloalkaliphiles, growing over wide ranges of salinity (0.3–10.0 % NaCl) and pH (7.5–10.0), with growth optima at 1.0–3.0 % NaCl and pH 8.5–9.0. Photoheterotrophic and chemoheterotrophic growth occurred with a number of organic compounds and biotin, p-aminobenzoate, thiamine and niacin as growth factors. No anaerobic respiration on nitrite, nitrate or fumarate and no fermentation were demonstrated. The strains grew photolithoautotrophically and chemolithoautotrophically with sulfide, sulfur and thiosulfate, oxidizing them to sulfate. Sulfide was oxidized via deposition of extracellular elemental sulfur. No growth with H2 as the electron donor was observed. The major fatty acid was C18 : 1 (78 %). The major quinone was ubiquinone Q-10. The DNA G+C content of strain A-36sT was 65.4 mol% (T m). According to genotypic and phenotypic characteristics, the investigated strains were assigned to a novel species of the genus Rhodovulum , for which the name Rhodovulum tesquicola sp. nov. is proposed. The type strain is A-36sT ( = VKM B-2491T = ATCC BAA-1573T), which was isolated from steppe soda lake Sul’fatnoe (Zabaikal’skii Krai, southern Siberia, Russia).


2021 ◽  
Vol 38 (3) ◽  
pp. 375-382
Author(s):  
Pınar Çağlayan

As an extreme environment, soda lakes harbor various haloalkaliphilic microorganisms. Salda Lake is one of the natural soda lake (pH˃9) in Turkey. Haloalkaliphiles are unique microorganisms in their ability to live in high alkaline and high saline conditions, and play an important role in biodegradation and bioremediation of hydrocarbons. Hence, the aims of this study were to isolate haloalkaliphilic bacteria from water sample of Salda Lake, to identify these isolates by both conventional and molecular methods, to screen their industrially important enzymes, and to investigate their antimicrobial resistance profiles. Six isolates were identified as Bacillus horneckiae, Bacillus subtilis, Bacillus paramycoides, Bacillus pumilus, Staphylococcus epidermidis, Bacillus haynesii according to 16S rRNA gene sequencing analysis. The industrially important enzymes (amylase, cellulase, pullulanase, lipase, urease, protease, caseinase, oxidase, catalase) were produced by haloalkaliphilic isolates. These enzymes maybe used in alkaline and saline industrial processes. Although Bacillus subtilis was susceptible to all antibiotics, other isolates showed resistance to at least one antibiotic. The resistance against antibiotics were found as ampicillin/sulbactam 83%, amoxycillin/clavulanic acid 83%, ampicillin 67%, mupirocin 67%, chloramphenicol 50%, tetracycline 50%, imipenem 50%, meropenem 50%, cefadroxil 17%. These bacteria may have develope resistance to antibiotics that entering their natural environment in different ways.


2006 ◽  
Vol 56 (11) ◽  
pp. 2623-2629 ◽  
Author(s):  
Elena V. Pikuta ◽  
Takashi Itoh ◽  
Paul Krader ◽  
Jane Tang ◽  
William B. Whitman ◽  
...  

A novel, alkaliphilic, obligately anaerobic bacterium, strain SCAT, was isolated from mud sediments of a soda lake in California, USA. The rod-shaped cells were motile, Gram-positive, formed spores and were 0.4–0.5×2.5–5.0 μm in size. Growth occurred within the pH range 6.7–10.0 and was optimal at pH 8.5. The temperature range for growth was 10–45 °C, with optimal growth at 35 °C. NaCl was required for growth. Growth occurred at 0.5–9.0 % (w/v) NaCl and was optimal at 1–2 % (w/v). The novel isolate was a catalase-negative chemo-organoheterotroph that fermented sugars, proteolysis products, some organic and amino acids, glycerol, d-cellobiose and cellulose. It was also capable of growth by the Stickland reaction. Strain SCAT was sensitive to tetracycline, chloramphenicol, rifampicin and gentamicin, but it was resistant to ampicillin and kanamycin. The G+C content of the genomic DNA was 34.2 mol%. Major fatty acid components were C14 : 0, iso-C15 : 0, C16 : 1 ω9c and C16 : 0. 16S rRNA gene sequence analysis of strain SCAT showed a similarity of approximately 97 % with the type strains of Clostridium formicaceticum and Clostridium aceticum in clostridial cluster XI and a similarity of less than 94.2 % to any other recognized Clostridium species and those of related genera in this cluster. Strain SCAT was clearly differentiated from C. formicaceticum and C. aceticum based on comparison of their phenotypic properties and fatty acid profiles, as well as low levels of DNA–DNA relatedness between strain SCAT and the type strains of these two species. Therefore, strain SCAT is considered to represent a novel species of a new genus, Anaerovirgula multivorans gen. nov., sp. nov., in clostridial cluster XI. The type strain is SCAT (=ATCC BAA-1084T=JCM 12857T=DSM 17722T=CIP 107910T).


2017 ◽  
Author(s):  
Dmitry Y. Sorokin ◽  
Tatiana V. Kolganova ◽  
Tatiana V. Khijniak ◽  
Brian E. Jones ◽  
Ilya V. Kublanov

Alkaline saline soils known also as “soda solonchaks” represent a natural soda habitat which differed from soda lake sediments by higher aeration and lower humidity. The microbiology of soda soils, in contrast to the more intensively studied soda lakes, remains poorly explored. In this work we present information on the diversity of culturable aerobic haloalkalitolerant bacteria with various hydrolytic activities from soda soils at different locations in Central Asia and Africa. In total, 180 isolates were obtained by using media with various polymers at pH 10 and 0.6 M total Na+. According to the 16S rRNA gene sequences analysis, most of the isolates belonged to Firmicutes and Actinobacteria. Most isolates possessed multiple hydrolytic activities, including endoglucanase, xylanase, amylase and protease. The pH profiling of selected representatives of actinobacteria and endospore-forming bacteria showed, that the former were facultative alkaliphiles, while the latter were mostly obligate alkaliphiles. The hydrolases of both groups were active at a broad pH range from 6 to 11. Overall, this work demonstrated the presence of a rich hydrolytic bacterial community in soda soils which might be explored further for production of haloalkalistable hydrolases.


2017 ◽  
Author(s):  
Dmitry Y. Sorokin ◽  
Tatiana V. Kolganova ◽  
Tatiana V. Khijniak ◽  
Brian E. Jones ◽  
Ilya V. Kublanov

Alkaline saline soils known also as “soda solonchaks” represent a natural soda habitat which differed from soda lake sediments by higher aeration and lower humidity. The microbiology of soda soils, in contrast to the more intensively studied soda lakes, remains poorly explored. In this work we present information on the diversity of culturable aerobic haloalkalitolerant bacteria with various hydrolytic activities from soda soils at different locations in Central Asia and Africa. In total, 180 isolates were obtained by using media with various polymers at pH 10 and 0.6 M total Na+. According to the 16S rRNA gene sequences analysis, most of the isolates belonged to Firmicutes and Actinobacteria. Most isolates possessed multiple hydrolytic activities, including endoglucanase, xylanase, amylase and protease. The pH profiling of selected representatives of actinobacteria and endospore-forming bacteria showed, that the former were facultative alkaliphiles, while the latter were mostly obligate alkaliphiles. The hydrolases of both groups were active at a broad pH range from 6 to 11. Overall, this work demonstrated the presence of a rich hydrolytic bacterial community in soda soils which might be explored further for production of haloalkalistable hydrolases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Esra Ersoy Omeroglu ◽  
Mert Sudagidan ◽  
Mediha Nur Zafer Yurt ◽  
Behiye Busra Tasbasi ◽  
Elif Esma Acar ◽  
...  

AbstractSoda lakes are saline and alkaline ecosystems that are considered to have existed since the first geological records of the world. These lakes support the growth of ecologically and economically important microorganisms due to their unique geochemistry. Microbiota members of lakes are valuable models to study the link between community structure and abiotic parameters such as pH and salinity. Lake Van is the largest endroheic lake and in this study, bacterial diversity of lake water, sediment, and pearl mullet (inci kefali; Alburnus tarichi), an endemic species of fish which are collected from different points of the lake, are studied directly and investigated meticulously using a metabarcoding approach after pre-enrichment. Bacterial community structures were identified using Next Generation Sequencing of the 16S rRNA gene. The analysis revealed that the samples of Lake Van contain high level of bacterial diversity. Direct water samples were dominated by Proteobacteria, Cyanobacteria, and Bacteroidota, on the other hand, pre-enriched water samples were dominated by Proteobacteria and Firmicutes at phylum-level. In direct sediment samples Proteobacteria, whereas in pre-enriched sediment samples Firmicutes and Proteobacteria were determined at highest level. Pre-enriched fish samples were dominated by Proteobacteria and Firmicutes at phylum-level. In this study, microbiota members of Lake Van were identified by taxonomic analysis.


2005 ◽  
Vol 55 (3) ◽  
pp. 995-999 ◽  
Author(s):  
A. A. Perevalova ◽  
V. A. Svetlichny ◽  
I. V. Kublanov ◽  
N. A. Chernyh ◽  
N. A. Kostrikina ◽  
...  

An obligately anaerobic, hyperthermophilic, organoheterotrophic archaeon, strain Z-1312T, was isolated from a freshwater hot spring of the Uzon caldera (Kamchatka Peninsula, Russia). The cells were regular cocci, 1–4 μm in diameter, with one long flagellum. The cell envelope was composed of a globular layer attached to the cytoplasmic membrane. The temperature range for growth was 63–89 °C, with an optimum between 80 and 82 °C. The pH range for growth at 80 °C was 4·8–6·8, with an optimum at pH 6·0. Strain Z-1312T grew by hydrolysis and/or fermentation of a wide range of polymeric and monomeric substrates, including agarose, amygdalin, arabinose, arbutin, casein hydrolysate, cellulose (filter paper, microcrystalline cellulose, carboxymethyl cellulose), dextran, dulcitol, fructose, lactose, laminarin, lichenan, maltose, pectin, peptone, ribose, starch and sucrose. No growth was detected on glucose, xylose, mannitol or sorbitol. Growth products when sucrose or starch were used as the substrate were acetate, H2 and CO2. Elemental sulfur, thiosulfate and nitrate added as potential electron acceptors for anaerobic respiration did not stimulate growth when tested with starch as the substrate. H2 at 100 % in the gas phase did not inhibit growth on starch or peptone. The G+C content of the DNA was 42·5 mol%. 16S rRNA gene sequence analysis placed the isolated strain Z-1312T as a member of the genus Desulfurococcus, where it represented a novel species, for which the name Desulfurococcus fermentans sp. nov. (type strain Z-1312T=DSM 16532 T=VKM V-2316T) is proposed.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3796 ◽  
Author(s):  
Dimitry Y. Sorokin ◽  
Tatiana V. Kolganova ◽  
Tatiana V. Khijniak ◽  
Brian E. Jones ◽  
Ilya V. Kublanov

Alkaline saline soils, known also as “soda solonchaks”, represent a natural soda habitat which differs from soda lake sediments by higher aeration and lower humidity. The microbiology of soda soils, in contrast to the more intensively studied soda lakes, remains poorly explored. In this work we investigate the diversity of culturable aerobic haloalkalitolerant bacteria with various hydrolytic activities from soda soils at different locations in Central Asia, Africa, and North America. In total, 179 pure cultures were obtained by using media with various polymers at pH 10 and 0.6 M total Na+. According to the 16S rRNA gene sequence analysis, most of the isolates belonged toFirmicutesandActinobacteria. Most isolates possessed multiple hydrolytic activities, including endoglucanase, xylanase, amylase and protease. The pH profiling of selected representatives of actinobacteria and endospore-forming bacteria showed, that the former were facultative alkaliphiles, while the latter were mostly obligate alkaliphiles. The hydrolases of selected representatives from both groups were active at a broad pH range from six to 11. Overall, this work demonstrates the presence of a rich hydrolytic bacterial community in soda soils which might be explored further for production of haloalkalistable hydrolases.


1992 ◽  
Vol 3 (4) ◽  
pp. 177-194 ◽  
Author(s):  
Lauri Kaila

The Elachistidae material collected during the joint Soviet-Finnish entomological expeditions to the Altai mountains, Baikal region and Tianshan mountains of the previous USSR is listed. Previous literature dealing with the Elachistidae in Central Asia is reviewed. A total of 40 species are dealt with, including descriptions of five new species: Stephensia jalmarella sp. n. (Altai), Elachista baikalica sp. n. (Baikal), E. talgarella sp. n. (southern Kazakhstan), E. esmeralda sp. n. (southern Kazakhstan) and E. filicornella sp. n. (southern Kazakhstan). The previously unknown females of E. bimaculata Parenti, 1981 and Biselachista zonulae Sruoga, 1992 are described.


2018 ◽  
Vol 52 (2) ◽  
pp. 407-416
Author(s):  
T. V. Makryi

Sedelnikovaea baicalensis, the Siberian-Central Asian lichen species, is recorded for the first time for Europe. Based on all the known localities, including those first-time reported from Baikal Siberia, the peculiarities of the ecology and distribution of this species are discussed, the map of its distribution is provided. It is concluded that the species was erroneously considered earlier as a Central Asian endemic. The center of the present range of this lichen is the steppes of Southern Siberia and Mongolia. Assumptions are made that S. baicalensis is relatively young (Paleogene-Neogene) species otherwise it would have a vast range extending beyond Asia, and also that the Yakut locations of this species indicate that in the Pleistocene its range was wider and covered a significant part of the Northeastern Siberia but later underwent regression. Based on the fact that in the mountains of Central Asia the species is found only in the upper mountain belts, it is proposed to characterize it as «cryo-arid xerophyte» in contrast to «arid xerophytes». A conclusion is made that the presence of extensive disjunctions of S. baicalensis range between the Southern Pre-Urals and the Altai-Sayan Mountains or the Mountains of Central Asia is unlikely; the lichen is most likely to occur in the Urals and most of Kazakhstan.


Sign in / Sign up

Export Citation Format

Share Document