scholarly journals Idiomarina fontislapidosi sp. nov. and Idiomarina ramblicola sp. nov., isolated from inland hypersaline habitats in Spain

2004 ◽  
Vol 54 (5) ◽  
pp. 1793-1797 ◽  
Author(s):  
M. José Martínez-Cánovas ◽  
Victoria Béjar ◽  
Fernando Martínez-Checa ◽  
Rafael Páez ◽  
Emilia Quesada

Two bacterial strains, F23T and R22T, have been isolated from hypersaline habitats in Málaga (S. Spain) and Murcia (E. Spain). The novel strains, similar to previously described Idiomarina species, are slightly curved rods, Gram-negative, chemo-organotrophic, strictly aerobic and motile by a single polar flagellum. Both strains produce catalase and oxidase. They hydrolyse aesculin, gelatin, casein, Tween 20, Tween 80 and DNA but not starch or tyrosine. The strains differ from the hitherto described Idiomarina species in their capacity to produce extracellular polysaccharides and their different patterns of carbon sources and antimicrobial susceptibility. They are moderate halophiles capable of growing in NaCl concentrations of 0·5 to 25 % w/v, the optimum being 3–5 % w/v. Cellular fatty acids are predominantly iso-branched. The main fatty acids in strain FP23T are 15 : 0 iso (26·75 %), 16 : 1ω7c (11·33 %) and 16 : 0 (11·73 %) whilst 15 : 0 iso (24·69 %), 17 : 0 iso (12·92 %) and 17 : 1ω9c (11·03 %) are predominant in strain R22T. The DNA G+C composition is 46·0 mol% in strain FP23T and 48·7 mol% in strain R22T. Phylogenetic analyses indicate conclusively that the two strains belong to the genus Idiomarina. DNA–DNA hybridization revealed that they represent novel species. In the light of the polyphasic evidence accumulated in this study, it is proposed that they be classified as novel species of the genus Idiomarina, with the names Idiomarina fontislapidosi sp. nov. (type strain F23T=CECT 5859T=LMG 22169T) and Idiomarina ramblicola sp. nov. (type strain R22T=CECT 5858T=LMG 22170T).

2007 ◽  
Vol 57 (6) ◽  
pp. 1276-1285 ◽  
Author(s):  
Keiichi Goto ◽  
Kaoru Mochida ◽  
Yuko Kato ◽  
Mika Asahara ◽  
Rieko Fujita ◽  
...  

Moderately thermophilic, acidophilic, spore-forming bacteria (146 strains) were isolated from various beverages and environments. Based on the results of sequence analysis of the hypervariable region of the 16S rRNA gene, eight of the strains represent novel species of the genus Alicyclobacillus. These strains were designated 3-A191T, 4-A336T, 5-A83JT, 5-A167N, 5-A239-2O-AT, E-8, RB718T and S-TABT. Phylogenetic analyses of 16S rRNA and DNA gyrase B subunit (gyrB) nucleotide sequences confirmed that the eight strains belonged to the Alicyclobacillus clade. Cells of the eight strains were Gram-positive or Gram-variable, strictly aerobic and rod-shaped. The strains grew well under acidic and moderately thermal conditions, produced acid from various sugars, contained menaquinone 7 as the major isoprenoid quinone and did not produce guaiacol. ω-Alicyclic fatty acids were the predominant lipid component of strains 4-A336T, 5-A83JT, 5-A167N, RB718T and S-TABT. No ω-alicyclic fatty acids were detected in strains 3-A191T, 5-A239-2O-AT or E-8, but iso- and anteiso-branched fatty acids and small amounts of straight-chain saturated fatty acids were detected instead. According to the DNA–DNA hybridization data and distinct morphological, physiological, chemotaxonomical and genetic traits, the eight strains represent six novel species within the genus Alicyclobacillus, for which the following names are proposed: Alicyclobacillus contaminans sp. nov. (type strain 3-A191T=DSM 17975T=IAM 15224T), Alicyclobacillus fastidiosus sp. nov. (type strain S-TABT=DSM 17978T=IAM 15229T), Alicyclobacillus kakegawensis sp. nov. (type strain 5-A83JT=DSM 17979T=IAM 15227T), Alicyclobacillus macrosporangiidus sp. nov. (type strain 5-A239-2O-AT=DSM 17980T=IAM 15370T), Alicyclobacillus sacchari sp. nov. (type strain RB718T=DSM 17974T=IAM 15230T) and Alicyclobacillus shizuokensis sp. nov. (type strain 4-A336T=DSM 17981T=IAM 15226T).


2010 ◽  
Vol 60 (8) ◽  
pp. 1897-1903 ◽  
Author(s):  
Jia-Yue Zhang ◽  
Xing-Yu Liu ◽  
Shuang-Jiang Liu

Two bacterial strains, DNG5T and V3M1T, isolated from forest soil of the Changbai mountains in China, were characterized using a polyphasic approach. Analysis of their 16S rRNA gene sequences indicated that strains DNG5T and V3M1T were phylogenetically related to members of the genus Agrococcus (96.0–98.4 % similarity) and Micrococcus (96.7–98.0 % similarity), respectively, within the order Actinomycetales. Strains DNG5T and V3M1T were Gram-stain-positive and strictly aerobic and formed yellow colonies on LB agar. Cells of strain DNG5T were short, non-motile rods, 0.4–0.5×0.8–1.0 μm. Strain DNG5T contained MK-10 and MK-11 as the major respiratory quinones and anteiso-C15 : 0 (49.2 %) and iso-C16 : 0 (22.4 %) as the major fatty acids. The diamino acid in the peptidoglycan of strain DNG5T was 2,4-diaminobutyric acid and the murein was of the acetyl type. Cells of strain V3M1T were cocci, 0.6–0.7 μm in diameter. The cell-wall peptidoglycan of strain V3M1T contained the amino acids lysine, glutamic acid, alanine and glycine. Strain V3M1T contained MK-7, MK-7(H2), MK-8 and MK-8(H2) as respiratory quinones and anteiso-C15 : 0 (78.2 %) and iso-C15 : 0 (13.1 %) as the major cellular fatty acids. The DNA G+C contents of strains DNG5T and V3M1T were 75.9 and 67.2 mol%, respectively. The DNA–DNA relatedness of strain DNG5T to Agrococcus jejuensis DSM 22002T, A. jenensis JCM 9950T, A. baldri JCM 12132T and A. citreus JCM 12398T was 58.3, 43.9, 36.1 and 54.1 %, respectively. The DNA–DNA relatedness of strain V3M1T to Micrococcus luteus CGMCC 1.2299T, M. antarcticus CGMCC 1.2373T and M. lylae CGMCC 1.2300T was 57.5, 45.4 and 39.0 %, respectively. Combining phenotypic and genotypic traits, strain DNG5T represents a novel species of the genus Agrococcus, for which the name Agrococcus terreus sp. nov. is proposed, with DNG5T (=CGMCC 1.6960T =NBRC 104260T) as the type strain. Strain V3M1T represents a novel species of the genus Micrococcus, for which the name Micrococcus terreus sp. nov. is proposed, with V3M1T (=CGMCC 1.7054T =NBRC 104258T) as the type strain.


2007 ◽  
Vol 57 (2) ◽  
pp. 316-320 ◽  
Author(s):  
Chenli Liu ◽  
Yehui Wu ◽  
Li Li ◽  
Yingfei Ma ◽  
Zongze Shao

Two bacterial strains, M-5T and WP0211T, were isolated from the surface water of a waste-oil pool in a coastal dock and from a deep-sea sediment sample from the West Pacific Ocean, respectively. Analysis of 16S rRNA gene sequences indicated that both strains belonged to the class Alphaproteobacteria and were closely related to Thalassospira lucentensis (96.1 and 96.2 %, gene sequence similarity, respectively). Based on the results of physiological and biochemical tests, as well as DNA–DNA hybridization experiments, it is suggested that these isolates represent two novel species of the genus Thalassospira. Various traits allow both novel strains to be differentiated from Thalassospira lucentensis, including oxygen requirement, nitrate reduction and denitrification abilities and major fatty acid profiles, as well as their ability to utilize six different carbon sources. Furthermore, the novel strains may be readily distinguished from each other by differences in their motility, flagellation, growth at 4 °C and 40 °C, their ability to hydrolyse Tween 40 and Tween 80, their utilization of 19 different carbon sources and by quantitative differences in their fatty acid contents. It is proposed that the isolates represent two novel species for which the names Thalassospira xiamenensis sp. nov. (type strain, M-5T=DSM 17429T=CGMCC 1.3998T) and Thalassospira profundimaris sp. nov. (type strain, WP0211T=DSM 17430T=CGMCC 1.3997T) are proposed.


2007 ◽  
Vol 57 (3) ◽  
pp. 548-551 ◽  
Author(s):  
Hang-Yeon Weon ◽  
Byung-Yong Kim ◽  
Min-Kyeong Kim ◽  
Seung-Hee Yoo ◽  
Soon-Wo Kwon ◽  
...  

Two bacterial strains, designated GH34-4T and GH41-7T, were isolated from greenhouse soil cultivated with cucumber. The bacteria were strictly aerobic, Gram-negative, rod-shaped and oxidase- and catalase-positive. 16S rRNA gene sequence analysis indicated that these strains belong to the genus Lysobacter within the Gammaproteobacteria. Strain GH34-4T showed highest sequence similarity to Lysobacter yangpyeongensis GH19-3T (97.5 %) and Lysobacter koreensis Dae16T (96.4 %), and strain GH41-7T showed highest sequence similarity to Lysobacter antibioticus DSM 2044T (97.5 %), Lysobacter enzymogenes DSM 2043T (97.5 %) and Lysobacter gummosus ATCC 29489T (97.4 %). Levels of DNA–DNA relatedness indicated that strains GH34-4T and GH41-7T represented species clearly different from L. yangpyeongensis, L. antibioticus, L. enzymogenes and L. gummosus. The major cellular fatty acids of strains GH34-4T and GH41-7T were iso-C16 : 0, iso-C15 : 0 and iso-C17 : 1 ω9c, and the major isoprenoid quinone was Q-8. The DNA G+C contents of GH34-4T and GH41-7T were 62.5 and 66.6 mol%, respectively. On the basis of the polyphasic taxonomic data presented, it is evident that each of these strains represents a novel species of the genus Lysobacter, for which the names Lysobacter niabensis sp. nov. (type strain GH34-4T=KACC 11587T=DSM 18244T) and Lysobacter niastensis sp. nov. (type strain GH41-7T=KACC 11588T=DSM 18481T) are proposed.


2005 ◽  
Vol 55 (3) ◽  
pp. 1305-1309 ◽  
Author(s):  
Raúl Rivas ◽  
Carmen Gutiérrez ◽  
Adriana Abril ◽  
Pedro F. Mateos ◽  
Eustoquio Martínez-Molina ◽  
...  

Two sporulating bacterial strains designated CECAP06T and CECAP16 were isolated from the rhizosphere of the legume Cicer arietinum in Argentina. Almost-complete 16S rRNA gene sequences identified the isolates as a Paenibacillus species. It was most closely related to Paenibacillus cineris LMG 18439T (99·6 % sequence similarity), Paenibacillus favisporus LMG 20987T (99·4 % sequence similarity) and Paenibacillus azoreducens DSM 13822T (97·7 % sequence similarity). The cells of this novel species were motile, sporulating, rod-shaped, Gram-positive and strictly aerobic. The predominant fatty acids were anteiso-C15 : 0, C16 : 0 and iso-C16 : 0. The DNA G+C content of strains CECAP06T and CECAP16 was 51·3 and 50·9 mol%, respectively. Growth was observed from many carbohydrates, but gas production was not observed from glucose. Catalase and oxidase activities were present. The isolates produced β-galactosidase and hydrolysed aesculin. Gelatinase, caseinase and urease were not produced. The results of DNA–DNA hybridization showed that the strains from this study constitute a novel species of the genus Paenibacillus, for which the name Paenibacillus rhizosphaerae sp. nov. is proposed. The type strain is CECAP06T (=LMG 21955T=CECT 5831T).


2004 ◽  
Vol 54 (3) ◽  
pp. 847-850 ◽  
Author(s):  
Alvaro Peix ◽  
Raúl Rivas ◽  
Ignacio Santa-Regina ◽  
Pedro F. Mateos ◽  
Eustoquio Martínez-Molina ◽  
...  

A phosphate-solubilizing bacterial strain designated OK2T was isolated from rhizospheric soil of grasses growing spontaneously in a soil from Spain. Cells of the strain were Gram-negative, strictly aerobic, rod-shaped and motile. Phylogenetic analysis of the 16S rRNA gene indicated that this bacterium belongs to the γ-subclass of Proteobacteria within the genus Pseudomonas and that the closest related species is Pseudomonas graminis. The strain produced catalase but not oxidase. Cellulose, casein, starch, gelatin and urea were not hydrolysed. Aesculin was hydrolysed. Growth was observed with many carbohydrates as carbon sources. The main non-polar fatty acids detected were hexadecenoic acid (16 : 1), hexadecanoic acid (16 : 0) and octadecenoic acid (18 : 1). The hydroxy fatty acids detected were 3-hydroxydecanoic acid (3-OH 10 : 0), 3-hydroxydodecanoic acid (3-OH 12 : 0) and 2-hydroxydodecanoic acid (2-OH 12 : 0). The G+C DNA content determined was 59·3 mol%. DNA–DNA hybridization showed 48·7 % relatedness between strain OK2T and P. graminis DSM 11363T and 26·2 % with respect to Pseudomonas rhizosphaerae LMG 21640T. Therefore, these results indicate that strain OK2T (=LMG 21974T=CECT 5822T) belongs to a novel species of the genus Pseudomonas, and the name Pseudomonas lutea sp. nov. is proposed.


2021 ◽  
Vol 12 ◽  
Author(s):  
James T. Tambong ◽  
Renlin Xu ◽  
Suzanne Gerdis ◽  
Greg C. Daniels ◽  
Denise Chabot ◽  
...  

Xanthomonas translucens is the etiological agent of the wheat bacterial leaf streak (BLS) disease. The isolation of this pathogen is usually based on the Wilbrink’s-boric acid–cephalexin semi-selective medium which eliminates 90% of other bacteria, some of which might be novel species. In our study, a general purpose nutrient agar was used to isolate 49 bacterial strains including X. translucens from necrotic wheat leaf tissues. Maximum likelihood cluster analysis of 16S rRNA sequences grouped the strains into 10 distinct genera. Pseudomonas (32.7%) and Pantoea (28.6%) were the dominant genera while Xanthomonas, Clavibacter and Curtobacterium had 8.2%, each. Erwinia and Sphingomonas had two strains, each. BLAST and phylogenetic analyses of multilocus sequence analysis (MLSA) of specific housekeeping genes taxonomically assigned all the strains to validly described bacterial species, except three strains (10L4B, 12L4D and 32L3A) of Pseudomonas and two (23L3C and 15L3B) of Sphingomonas. Strains 10L4B and12L4D had Pseudomonas caspiana as their closest known type strain while strain 32L3A was closest to Pseudomonas asturiensis. Sphingomonas sp. strains 23L3C and 15L3B were closest to S. faeni based on MLSA analysis. Our data on MLSA, whole genome-based cluster analysis, DNA-DNA hybridization and average nucleotide identity, matrix-assisted laser desorption/ionization-time-of-flight, chemotaxonomy and phenotype affirmed that these 5 strains constitute three novel lineages and are taxonomically described in this study. We propose the names, Sphingomonas albertensis sp. nov. (type strain 23L3CT = DOAB 1063T = CECT 30248T = LMG 32139T), Pseudomonas triticumensis sp. nov. (type strain 32L3AT = DOAB 1067T = CECT 30249T = LMG 32140T) and Pseudomonas foliumensis sp. nov. (type strain 10L4BT = DOAB 1069T = CECT 30250T = LMG 32142T). Comparative genomics of these novel species, relative to their closest type strains, revealed unique repertoires of core secretion systems and secondary metabolites/antibiotics. Also, the detection of CRISPR-Cas systems in the genomes of these novel species suggests an acquired mechanism for resistance against foreign mobile genetic elements. The results presented here revealed a cohabitation, within the BLS lesions, of diverse bacterial species, including novel lineages.


2011 ◽  
Vol 61 (7) ◽  
pp. 1554-1560 ◽  
Author(s):  
Yang Wang ◽  
Feng Cai ◽  
Yali Tang ◽  
Jun Dai ◽  
Huan Qi ◽  
...  

A novel strain, designated HY-50RT, isolated from soil of a Euphrates poplar (Populus euphratica) forest in Xinjiang, China, was characterized using a polyphasic taxonomic approach. Cells of the isolate were Gram-reaction-negative, strictly aerobic, rod-shaped, non-motile, oxidase-negative and catalase-positive. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate was a member of the phylum Bacteroidetes, its closest relatives being Niastella populi THYL-44T (93.6 % similarity), Flavisolibacter ginsengisoli Gsoil 643T (93.5 %), Terrimonas ferruginea IAM 15098T (93.3 %) and Flavisolibacter ginsengiterrae Gsoil 492T (93.2 %). The major fatty acids were iso-C15 : 1 G (11.7 %), iso-C15 : 0 (19.6 %) and iso-C17 : 0 3-OH (19.3 %). The predominant menaquinone of strain HY-50RT was MK-7 and the genomic DNA G+C content was 46.8 mol%. Flexirubin-type pigments were not produced. Based on phylogenetic evidence and the results of phenotypic, genotypic and chemotaxonomic analysis, strain HY-50RT represents a novel species of a novel genus, for which the name Flavitalea populi gen. nov., sp. nov. is proposed. The type strain is HY-50RT ( = CCTCC AB 208255T  = NRRL B-59222T).


2004 ◽  
Vol 54 (2) ◽  
pp. 571-576 ◽  
Author(s):  
Hana Yi ◽  
Kyung Sook Bae ◽  
Jongsik Chun

Two strictly aerobic, halophilic strains of the γ-Proteobacteria, designated JC2042T and JC2043T, were obtained from a sediment sample of getbol, the Korean tidal flat. Comparative 16S rDNA sequence studies revealed that the test strains were related most closely to the type strains of the genera Alteromonas (93·5–95·5 %) and Glaciecola (91·1–93·3 %). Phylogenetic analyses demonstrated that strains JC2042T and JC2043T formed a distinct monophyletic clade within the family Alteromonadaceae and clustered distantly with the genera Alteromonas and Glaciecola. Physiological, biochemical and chemotaxonomic data also indicated that the two getbol isolates were significantly different from members of these two genera and others with validly published names. Cells were rod-shaped and motile with a polar flagellum. The major isoprenoid quinone was Q8. The predominant cellular fatty acids were C16 : 0, C18 : 1 ω7c and a mixture of C16 : 1 ω7c and iso-C15 : 0 2-OH. DNA G+C contents were 48–54 mol%. On the basis of this polyphasic study, Aestuariibacter gen. nov. is proposed with two novel species, Aestuariibacter salexigens sp. nov. (type strain, JC2042T=IMSNU 14006T=KCTC 12042T=DSM 15300T) and Aestuariibacter halophilus sp. nov. (type strain, JC2043T=IMSNU 14007T=KCTC 12043T=DSM 15266T). Aestuariibacter salexigens is the type species of the genus. In addition, an emended description of Alteromonas macleodii is proposed.


2004 ◽  
Vol 54 (6) ◽  
pp. 2151-2154 ◽  
Author(s):  
Hana Yi ◽  
Jongsik Chun

A strictly aerobic, non-motile, rod-shaped actinomycete, designated strain JC2056T, was isolated from a sediment sample of getbol, the tidal flat of Korea. Results of 16S rRNA gene sequence analysis indicated that the isolate belonged to the genus Nocardioides, with the highest similarity being to Nocardioides luteus KCTC 9575T (95·7 %). The major menaquinone was MK-8(H4), and predominant cellular fatty acids were iso-16 : 0 and iso-16 : 1 H. The DNA G+C content was 70 mol%. Based on the morphological, physiological, biochemical and chemotaxonomical data presented in this study, strain JC2056T should be classified as a novel species, for which the name Nocardioides aestuarii sp. nov. is proposed; the type strain is JC2056T (=IMSNU 14029T=KCTC 9921T=JCM 12125T).


Sign in / Sign up

Export Citation Format

Share Document