scholarly journals Novel members of the family Flavobacteriaceae from Antarctic maritime habitats including Subsaximicrobium wynnwilliamsii gen. nov., sp. nov., Subsaximicrobium saxinquilinus sp. nov., Subsaxibacter broadyi gen. nov., sp. nov., Lacinutrix copepodicola gen. nov., sp. nov., and novel species of the genera Bizionia, Gelidibacter and Gillisia

2005 ◽  
Vol 55 (4) ◽  
pp. 1471-1486 ◽  
Author(s):  
John P. Bowman ◽  
David S. Nichols

Several orange- and yellow-pigmented, halophilic, strictly aerobic, chemoheterotrophic, Gram-negative strains were isolated during investigations of maritime Antarctic habitats, including coastal fast sea-ice brine and algae, crustaceans and quartz stone sublithic cyanobacterial biofilms. Isolates investigated in this study belonged to the marine clade of the family Flavobacteriaceae and represented lineages that were either distinct from species with validly published names or appeared to be distinct species within existing genera. A polyphasic taxonomic analysis demonstrated the novelty of these strains, and several new taxa are proposed. Strains from quartz stone sublithic communities were grouped into two new genera designated Subsaximicrobium gen. nov. and Subsaxibacter gen. nov. The genus Subsaximicrobium included the species Subsaximicrobium wynnwilliamsii sp. nov. (type species; type strain G#7T=ACAM 1070T=CIP 108525T) and Subsaximicrobium saxinquilinus sp. nov. (type strain Y4-5T=ACAM 1063T=CIP 108526T). The genus Subsaxibacter contained a single species designated Subsaxibacter broadyi sp. nov. (type strain P7T=ACAM 1064T=CIP 108527T). A novel bacterial strain isolated from the lake-dwelling, calanoid copepod Paralabidocera antarctica was given the name Lacinutrix copepodicola gen. nov., sp. nov. (type strain DJ3T=ACAM 1055T=CIP 108538T). Four novel species of the genus Bizionia were discovered, Bizionia algoritergicola sp. nov. (type strain APA-1T=ACAM 1056T=CIP 108533T) and Bizionia myxarmorum sp. nov. (type strain ADA-4T=ACAM 1058T=CIP 108535T), which were isolated from the carapace surfaces of sea-ice algae-feeding amphipods, and Bizionia gelidisalsuginis sp. nov. (type strain IC164T=ACAM 1057T=CIP 108536T) and Bizionia saleffrena sp. nov. (type strain HFDT=ACAM 1059T=CIP 108534T), which were isolated from sea-ice brines. Several other novel species were also isolated from sea-ice samples, including two novel species of the genus Gelidibacter, Gelidibacter gilvus sp. nov. (type strain IC158T=ACAM 1054T=CIP 108531T) and Gelidibacter salicanalis sp. nov. (type strain IC162T=ACAM 1053T=CIP 108532T), as well as three novel species of the genus Gillisia, Gillisia illustrilutea sp. nov. (type strain IC157T=ACAM 1062T=CIP 108530T), Gillisia sandarakina sp. nov. (type strain IC148T=ACAM 1060T=CIP 108529T) and Gillisia hiemivivida sp. nov. (type strain IC154T=ACAM 1061T=CIP 108528T).

2006 ◽  
Vol 56 (4) ◽  
pp. 883-887 ◽  
Author(s):  
Olga I. Nedashkovskaya ◽  
Seung Bum Kim ◽  
Marc Vancanneyt ◽  
Dong Sung Shin ◽  
Anatoly M. Lysenko ◽  
...  

A sponge-associated strain, KMM 7019T, was investigated in a polyphasic taxonomic study. The bacterium was strictly aerobic, heterotrophic, Gram-negative, yellow-pigmented, motile by gliding and oxidase-, catalase-, β-galactosidase- and alkaline phosphatase-positive. A phylogenetic analysis based on 16S rRNA gene sequences revealed that strain KMM 7019T is closely related to members of the genus Salegentibacter, namely Salegentibacter holothuriorum, Salegentibacter mishustinae and Salegentibacter salegens (97·7–98 % sequence similarities). The DNA–DNA relatedness between the strain studied and Salegentibacter species ranged from 27 to 31 %, clearly demonstrating that KMM 7019T belongs to a novel species of the genus Salegentibacter, for which the name Salegentibacter agarivorans sp. nov. is proposed. The type strain is KMM 7019T (=KCTC 12560T=LMG 23205T).


2011 ◽  
Vol 61 (9) ◽  
pp. 2227-2230 ◽  
Author(s):  
De-Chao Zhang ◽  
Hong-Can Liu ◽  
Yu-Guang Zhou ◽  
Franz Schinner ◽  
Rosa Margesin

A Gram-reaction-negative, strictly aerobic, motile, rod-shaped bacterium, designated strain BZ78T, was isolated from soil from an industrial site. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain BZ78T belonged to the family Rhodospirillaceae and formed a coherent cluster with the type strain of Tistrella mobilis (98.3 % pairwise similarity). The predominant cellular fatty acids of strain BZ78T were C18 : 1ω7c (58.3 %), C19 : 0ω8c cyclo (11.5 %), C18 : 1 2-OH (10.9 %) and C14 : 0 3-OH (6.4 %). The predominant ubiquinone was Q-10. The genomic DNA G+C content of strain BZ78T was 65.8 mol%. On the basis of phenotypic characteristics, phylogenetic analysis and DNA–DNA relatedness data, strain BZ78T is considered to represent a novel species of the genus Tistrella, for which the name Tistrella bauzanensis sp. nov. is proposed. The type strain is BZ78T ( = DSM 22817T  = CGMCC 1.10188T  = LMG 26047T).


2004 ◽  
Vol 54 (2) ◽  
pp. 571-576 ◽  
Author(s):  
Hana Yi ◽  
Kyung Sook Bae ◽  
Jongsik Chun

Two strictly aerobic, halophilic strains of the γ-Proteobacteria, designated JC2042T and JC2043T, were obtained from a sediment sample of getbol, the Korean tidal flat. Comparative 16S rDNA sequence studies revealed that the test strains were related most closely to the type strains of the genera Alteromonas (93·5–95·5 %) and Glaciecola (91·1–93·3 %). Phylogenetic analyses demonstrated that strains JC2042T and JC2043T formed a distinct monophyletic clade within the family Alteromonadaceae and clustered distantly with the genera Alteromonas and Glaciecola. Physiological, biochemical and chemotaxonomic data also indicated that the two getbol isolates were significantly different from members of these two genera and others with validly published names. Cells were rod-shaped and motile with a polar flagellum. The major isoprenoid quinone was Q8. The predominant cellular fatty acids were C16 : 0, C18 : 1 ω7c and a mixture of C16 : 1 ω7c and iso-C15 : 0 2-OH. DNA G+C contents were 48–54 mol%. On the basis of this polyphasic study, Aestuariibacter gen. nov. is proposed with two novel species, Aestuariibacter salexigens sp. nov. (type strain, JC2042T=IMSNU 14006T=KCTC 12042T=DSM 15300T) and Aestuariibacter halophilus sp. nov. (type strain, JC2043T=IMSNU 14007T=KCTC 12043T=DSM 15266T). Aestuariibacter salexigens is the type species of the genus. In addition, an emended description of Alteromonas macleodii is proposed.


2011 ◽  
Vol 61 (7) ◽  
pp. 1595-1600 ◽  
Author(s):  
Joong-Jae Kim ◽  
Hyun Mi Jin ◽  
Hyo Jung Lee ◽  
Che Ok Jeon ◽  
Eiko Kanaya ◽  
...  

A strictly aerobic, Gram-stain-negative, yellow-pigmented, non-spore-forming, motile (by gliding), rod-shaped bacterium, designated strain 15F3T, was isolated from leaf-and-branch compost. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 15F3T was most closely related to Flavobacterium reichenbachii WB 3.2-61T and formed a distinct phyletic lineage within the genus Flavobacterium, the type genus of the family Flavobacteriaceae. Growth was observed at 10–34 °C (optimum, 30 °C) and pH 6.0–8.0 (optimum, pH 7.0). No growth occurred in the presence of ≥2 % (w/v) NaCl. Strain 15F3T reduced nitrate to nitrogen and showed catalase activity but no oxidase activity. The predominant cellular fatty acids were iso-C15 : 0 and summed feature 3 (comprising C16 : 1ω7c and/or iso-C15 : 0 2-OH). The major isoprenoid quinone was menaquinone-6. The G+C content of the genomic DNA was 31.1 mol%. On the basis of data from this polyphasic study, strain 15F3T may be classified as a representative of a novel species within the genus Flavobacterium, for which the name Flavobacterium banpakuense sp. nov. is proposed; the type strain is 15F3T ( = KACC 14225T  = JCM 16466T).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3683-3689 ◽  
Author(s):  
Mie Johanne Hansen ◽  
Mira Strøm Braaten ◽  
Anders Miki Bojesen ◽  
Henrik Christensen ◽  
Christian Sonne ◽  
...  

Thirty-three suspected strains of the family Pasteurellaceae isolated from the oral cavity of polar and brown bears were characterized by genotypic and phenotypic tests. Phylogenetic analysis of partial 16S rRNA gene and rpoB sequences showed that the investigated isolates formed two closely related monophyletic groups, representing two novel species of a new genus. Based on 16S rRNA gene sequence comparison Bibersteinia trehalosi was the closest related species with a validly published name, with 95.4 % similarity to the polar bear group and 94.4 % similarity to the brown bear group. Otariodibacter oris was the closest related species based on rpoB sequence comparison with a similarity of 89.8 % with the polar bear group and 90 % with the brown bear group. The new genus could be separated from existing genera of the family Pasteurellaceae by three to ten phenotypic characters, and the two novel species could be separated from each other by two phenotypic characters. It is proposed that the strains should be classified as representatives of a new genus, Ursidibacter gen. nov., with two novel species: the type species Ursidibacter maritimus sp. nov., isolated from polar bears (type strain Pb43106T = CCUG 65144T = DSM 28137T, DNA G+C content 39.3 mol%), and Ursidibacter arcticus sp. nov., isolated from brown bears (type strain Bamse61T = CCUG 65145T = DSM 28138T).


Author(s):  
Qiong Xue ◽  
Zhenqiang Zuo ◽  
Heng Zhou ◽  
Jian Zhou ◽  
Shengjie Zhang ◽  
...  

A haloalkaliphilic strain XQ-INN 246T was isolated from the sediment of a salt pond in Inner Mongolia Autonomous Region, China. Cells of the strain were rods, motile and strictly aerobic. The strain was able to grow in the presence of 2.6–5.3 M NaCl (optimum concentration is 4.4 M) at 30–50 °C (optimum temperature is 42 °C) and pH 7.0–10.0 (optimum pH is 8.0–8.5). The whole genome sequencing of strain XQ-INN 246T revealed a genome size of 4.52 Mbp and a DNA G+C content of 62.06 mol%. Phylogenetic tree based on 16S rRNA gene sequences and concatenated amino acid sequences of 122 single-copy conserved proteins revealed a robust lineage of the strain XQ-INN 246T with members of related genera of the family Natrialbaceae . The strain possessed the polar lipids of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester. No glycolipids were detected. Based on phylogenetic analysis, phenotypic characteristics, chemotaxonomic properties and genome relatedness, the isolate was proposed as the type strain of a novel species of a new genus within the family Natrialbaceae, for which the name Salinadaptatus halalkaliphilus gen. nov., sp. nov. is proposed. The type strain is XQ-INN 246T (=CGMCC 1.16692T=JCM 33751T).


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4358-4362 ◽  
Author(s):  
Yochan Joung ◽  
Mi-ae Seo ◽  
Heeyoung Kang ◽  
Haneul Kim ◽  
Tae-seok Ahn ◽  
...  

A Gram-staining-negative, non-gliding, orange-pigmented bacterial strain, designated HMF2925T, was isolated from fresh water in Korea. The phylogenetic tree based on 16S rRNA gene sequences showed that strain HMF2925T formed a distinct lineage within the genus Emticicia. Strain HMF2925T was closely related to Emticicia oligotrophica DSM 17448T (95.5 %) and Emticicia ginsengisoli Gsoil 085T (94.1 %). The major fatty acids of strain HMF2925T were summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c), iso-C15 : 0, C16 : 1ω5c and C16 : 0.The major polar lipids of strain HMF2925T were phosphatidylethanolamine, phosphatidylinositol, diphosphatidylglycerol, phosphatidylglycerol, an unidentified glycolipid, two unidentified amino lipids and three unidentified polar lipids. The DNA G+C content of strain HMF2925T was 36.5 mol%. On the basis of the evidence presented in this study, strain HMF2925T represents a novel species of the genus Emticicia, for which the name Emticicia aquatica sp. nov. is proposed. The type strain is HMF2925T ( = KCTC 42574T = CECT 8858T).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3333-3338 ◽  
Author(s):  
Wei Fang ◽  
Yong Li ◽  
Han Xue ◽  
Guozhong Tian ◽  
Laifa Wang ◽  
...  

Three novel endophytic strains, designated 17B10-2-12T, 26C10-4-4 and D13-10-4-9, were isolated from the bark of Populus euramericana in Heze, Shandong Province, China. They were Gram-reaction-negative, aerobic, non-motile, short-rod-shaped, oxidase-positive and catalase-negative. A phylogenetic analysis of the 16S rRNA gene showed that the three novel strains clustered with members of the family Comamonadaceae and formed a distinct branch. The isolates shared 100 % similarities among themselves and had the highest sequence similarity with Xenophilus azovorans DSM 13620T (95.2 %) and Xenophilus arseniciresistens YW8T (95.0 %), and less than 95.0 % sequence similarities with members of other species. Their major fatty acids were C16 : 0, C17 : 0 cyclo, C18 : 1ω7c and C16 : 1ω7c/C16 : 1ω6c. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and three unknown aminophospholipids. The predominant quinone was ubiquinone-8 (Q-8). The DNA G+C content was 69.5–70.0 mol%. Based on data from a polyphasic taxonomy study, the three strains represent a novel species of a novel genus of the family Comamonadaceae, for which the name Corticibacter populi gen. nov., sp. nov. is proposed. The type strain is 17B10-2-12T ( = CFCC 12099T = KCTC 42091T).


2007 ◽  
Vol 57 (3) ◽  
pp. 548-551 ◽  
Author(s):  
Hang-Yeon Weon ◽  
Byung-Yong Kim ◽  
Min-Kyeong Kim ◽  
Seung-Hee Yoo ◽  
Soon-Wo Kwon ◽  
...  

Two bacterial strains, designated GH34-4T and GH41-7T, were isolated from greenhouse soil cultivated with cucumber. The bacteria were strictly aerobic, Gram-negative, rod-shaped and oxidase- and catalase-positive. 16S rRNA gene sequence analysis indicated that these strains belong to the genus Lysobacter within the Gammaproteobacteria. Strain GH34-4T showed highest sequence similarity to Lysobacter yangpyeongensis GH19-3T (97.5 %) and Lysobacter koreensis Dae16T (96.4 %), and strain GH41-7T showed highest sequence similarity to Lysobacter antibioticus DSM 2044T (97.5 %), Lysobacter enzymogenes DSM 2043T (97.5 %) and Lysobacter gummosus ATCC 29489T (97.4 %). Levels of DNA–DNA relatedness indicated that strains GH34-4T and GH41-7T represented species clearly different from L. yangpyeongensis, L. antibioticus, L. enzymogenes and L. gummosus. The major cellular fatty acids of strains GH34-4T and GH41-7T were iso-C16 : 0, iso-C15 : 0 and iso-C17 : 1 ω9c, and the major isoprenoid quinone was Q-8. The DNA G+C contents of GH34-4T and GH41-7T were 62.5 and 66.6 mol%, respectively. On the basis of the polyphasic taxonomic data presented, it is evident that each of these strains represents a novel species of the genus Lysobacter, for which the names Lysobacter niabensis sp. nov. (type strain GH34-4T=KACC 11587T=DSM 18244T) and Lysobacter niastensis sp. nov. (type strain GH41-7T=KACC 11588T=DSM 18481T) are proposed.


2004 ◽  
Vol 54 (5) ◽  
pp. 1669-1676 ◽  
Author(s):  
Yi-Chueh Lin ◽  
Kazunori Uemori ◽  
Dominique A. de Briel ◽  
Vallapa Arunpairojana ◽  
Akira Yokota

Seven strains of actinobacteria, isolated from soil, wounds, urine, cow faeces, human blood and butter, were characterized by a polyphasic approach to clarify their taxonomic position. On the basis of chemotaxonomy, 16S rRNA gene analysis and DNA relatedness, strain IAM 14851T can be classified within the cluster of the genus Leucobacter and is proposed as a novel species, Leucobacter albus sp. nov., with strain IAM 14851T (=TISTR 1515T) as the type strain. The other six strains formed a phylogenetically separate branch in the family Microbacteriaceae, having the following characteristics: the major menaquinones are MK-8 to MK-10, the DNA G+C content ranges from 62 to 68 mol%, the diamino acid in the cell wall is diaminobutyric acid and the muramic acid in the peptidoglycan is of the acetyl type. The major fatty acids are 12-methyltetradecanoic acid (anteiso-C15 : 0), hexadecanoic acid (C16 : 0), 14-methyl-pentadecanoic acid (iso-C16 : 0) and 14-methyl-hexadecanoic acid (anteiso-C17 : 0). On the basis of morphological, physiological and chemotaxonomic characteristics, together with DNA–DNA hybridization and 16S rRNA gene sequence comparison, the novel genus Zimmermannella gen. nov. is proposed for these six strains. Four novel species are proposed: Zimmermannella helvola sp. nov. (type species; type strain IAM 14726T=NBRC 15775T=DSM 20419T=TISTR 1509T), Zimmermannella alba sp. nov. (type strain IAM 14724T=NBRC 15616T=TISTR 1510T), Zimmermannella bifida sp. nov. (type strain IAM 14848T=TISTR 1511T) and Zimmermannella faecalis sp. nov. (type strain IAM 15030T=NBRC 15706T=ATCC 13722T=TISTR 1514T).


Sign in / Sign up

Export Citation Format

Share Document