scholarly journals Leptospira yasudae sp. nov. and Leptospira stimsonii sp. nov., two new species of the pathogenic group isolated from environmental sources

2020 ◽  
Vol 70 (3) ◽  
pp. 1450-1456 ◽  
Author(s):  
Arnau Casanovas-Massana ◽  
Camila Hamond ◽  
Luciane A. Santos ◽  
Daiana de Oliveira ◽  
Kathryn P. Hacker ◽  
...  

Four spirochetes (F1T, B21, YaleT and AMB6-RJ) were isolated from environmental sources: F1T and B21 from soils of an urban slum community in Salvador (Brazil), YaleT from river water in New Haven, Connecticut (USA) and AMB6-RJ from a pond in a horse farm in Rio de Janeiro (Brazil). Isolates were helix-shaped, aerobic, highly motile and non-virulent in a hamster model of infection. Draft genomes of the strains were obtained and analysed to determine the relatedness to other species of the genus Leptospira . The analysis of 498 core genes showed that strains F1T/B21 and YaleT/AMB6-RJ formed two distinct phylogenetic clades within the ‘Pathogens’ group (group I). The average nucleotide identity (ANI) values of strains F1T/B21 and YaleT/AMB6-RJ to other previously described Leptospira species were below <84 % and <82 %, respectively, which confirmed that these isolates should be classified as representatives of two novel species. Therefore, we propose Leptospira yasudae sp. nov. and Leptospira stimsonii sp. nov. as new species in the genus Leptospira . The type strains are F1T (=ATCC-TSD-163=KIT0259=CLEP00287) and YaleT (=ATCC-TDS-162=KIT0258=CLEP00288), respectively.

2020 ◽  
Vol 70 (5) ◽  
pp. 2998-3003 ◽  
Author(s):  
Philipp Oberhettinger ◽  
Leonard Schüle ◽  
Matthias Marschal ◽  
Daniela Bezdan ◽  
Stephan Ossowski ◽  
...  

Nine independent Gram-negative bacterial strains were isolated from rectal swabs or stool samples of immunocompromised patients from two different wards of a university hospital. All isolates were phylogenetically analysed based on their 16S rRNA gene sequence, housekeeping gene recN, multilocus sequence analysis of concatenated partial fusA, leuS, pyrG and rpoB sequences, and by whole genome sequencing data. The analysed strains of the new species cluster together and form a separate branch with Citrobacter werkmanii NBRC105721T as the most closely related species. An average nucleotide identity value of 95.9–96% and computation of digital DNA–DNA hybridization values separate the new species from all other type strains of the genus Citrobacter . Biochemical characteristics further delimit the isolates from closely related Citrobacter type strains. As a result of the described data, a new Citrobacter species is introduced, for which the name Citrobacter cronae sp. nov. is proposed. The type strain is Tue2-1T with a G+C DNA content of 52.2 mol%.


Author(s):  
Matan Shelomi ◽  
Wen-Ming Chen ◽  
Hsin-Kuang Chen ◽  
Hsin-Ying Lee ◽  
Chiu-Chung Young ◽  
...  

During an investigation of microbes associated with arthropods living in decaying coconut trees, a Pseudomonas isolate, Milli4T, was cultured from the digestive tract of the common Asian millipede, Trigoniulus corallinus. Sequence analysis of 16S rRNA and rpoB genes found that Milli4T was closely related but not identical to Pseudomonas panipatensis Esp-1T, Pseudomonas knackmussi B13T and Pseudomonas humi CCA1T. Whole genome sequencing suggested that this isolate represents a new species, with average nucleotide identity (OrthoANIu) values of around 83.9–87.7% with its closest relatives. Genome-to-genome distance calculations between Milli4T and its closest relatives also suggested they are distinct species. The genomic DNA G+C content of Milli4T was approximately 65.0 mol%. Phenotypic and chemotaxonomic characterization and fatty acid methyl ester analysis was performed on Milli4T and its related type strains. Based on these data, the new species Pseudomonas schmalbachii sp. nov. is proposed, and the type strain is Milli4T (=BCRC 81294T=JCM 34414T=CIP 111980T).


Author(s):  
Jiali Li ◽  
Mingkai Pan ◽  
Xianjiao Zhang ◽  
Yang Zhou ◽  
Guang-Da Feng ◽  
...  

Three aerobic, Gram-stain-negative, non-motile and rod-shaped bacteria, designated strains RXD178T, RXD172-2 and RLT1W51T, were isolated from two forest soil samples of Nanling National Nature Reserve in Guangdong Province, PR China. Phylogenetic analyses based on 16S rRNA gene sequences and 92 core genes showed that they belonged to the genus Collimonas , and were most closely related to four validly published species with similarities ranging from 99.4 to 98.2 %. The genomic DNA G+C contents of strains RXD178T, RXD172-2 and RLT1W51T were 57.1, 59.5 and 59.4 mol%, respectively. The genome-derived average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between the novel strains and closely related type species were below 37.90 and 89.34 %, respectively. Meanwhile, the ANI and dDDH values between strains RXD172-2 and RLT1W51T were 98.27 and 83.50 %, respectively. The three novel strains contained C16 : 0, C17 : 0 cyclo and summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c) as the major fatty acids, and summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c) comprised a relative higher proportion in strain RXD178T than in other strains. Both strains RXD172-2 and RLT1W51T had phosphatidylglycerol (PG), phosphatidylethanolamine (PE), diphosphatidylglycerol (DPG) and an unidentified aminophospholipid (APL) as the main polar lipids while only PE and APL were detected in strain RXD178T. Ubiquinone 8 was the predominant quinone. Based on the phenotypic, chemotaxonomic, phylogenetic and genomic analyses, strain RXD178T should be considered as representing one novel species within the genus Collimonas and strains RXD172-2 and RLT1W51T as another one, for which the names Collimonas silvisoli sp. nov. and Collimonas humicola sp. nov. are proposed, with RXD178T (=GDMCC 1.1925T=KACC 21987T) and RLT1W51T (=GDMCC 1.1923T=KACC 21985T) as the type strains, respectively.


2020 ◽  
Vol 70 (8) ◽  
pp. 4623-4636 ◽  
Author(s):  
Luisa Caroline Ferraz Helene ◽  
Milena Serenato Klepa ◽  
Graham O’Hara ◽  
Mariangela Hungria

The genus Bradyrhizobium is considered as the probable ancestor lineage of all rhizobia, broadly spread in a variety of ecosystems and with remarkable diversity. A polyphasic study was performed to characterize and clarify the taxonomic position of eight bradyrhizobial strains isolated from indigenous legumes to Western Australia. As expected for the genus, the 16S rRNA gene sequences were highly conserved, but the results of multilocus sequence analysis with four housekeeping genes (dnaK, glnII, gyrB and recA) confirmed three new distinct clades including the following strains: (1) WSM 1744T, WSM 1736 and WSM 1737; (2) WSM 1791T and WSM 1742; and (3) WSM 1741T, WSM 1735 and WSM 1790. The highest ANI values of the three groups in relation to the closest type strains were 92.4, 92.3 and 93.3 %, respectively, below the threshold of species circumscription. The digital DNA–DNA hybridization analysis also confirmed new species descriptions, with less than 52 % relatedness with the closest type strains. The phylogeny of the symbiotic gene nodC clustered the eight strains into the symbiovar retamae, together with seven Bradyrhizobium type strains, sharing from 94.2–98.1 % nucleotide identity (NI), and less than 88.7 % NI with other related strains and symbiovars. Morpho-physiological, phylogenetics, genomic and symbiotic traits were determined for the new groups and our data support the description of three new species, Bradyrhizobium archetypum sp. nov., Bradyrhizobium australiense sp. nov. and Bradyrhizobium murdochi sp. nov., with WSM 1744T (=CNPSo 4013T=LMG 31646T), WSM 1791T (=CNPSo 4014T=LMG 31647T) and WSM 1741T (=CNPSo 4020T=LMG 31651T) designated as type strains, respectively.


2020 ◽  
Vol 6 (9) ◽  
Author(s):  
Benjamin J. Perry ◽  
John T. Sullivan ◽  
Elena Colombi ◽  
Riley J.T. Murphy ◽  
Joshua P. Ramsay ◽  
...  

Mesorhizobium is a genus of soil bacteria, some isolates of which form an endosymbiotic relationship with diverse legumes of the Loteae tribe. The symbiotic genes of these mesorhizobia are generally carried on integrative and conjugative elements termed symbiosis islands (ICESyms). Mesorhizobium strains that nodulate Lotus spp. have been divided into host-range groupings. Group I (GI) strains nodulate L. corniculatus and L. japonicus ecotype Gifu, while group II (GII) strains have a broader host range, which includes L. pedunculatus. To identify the basis of this extended host range, and better understand Mesorhizobium and ICESym genomics, the genomes of eight Mesorhizobium strains were completed using hybrid long- and short-read assembly. Bioinformatic comparison with previously sequenced mesorhizobia genomes indicated host range was not predicted by Mesorhizobium genospecies but rather by the evolutionary relationship between ICESym symbiotic regions. Three radiating lineages of Loteae ICESyms were identified on this basis, which correlate with Lotus spp. host-range grouping and have lineage-specific nod gene complements. Pangenomic analysis of the completed GI and GII ICESyms identified 155 core genes (on average 30.1 % of a given ICESym). Individual GI or GII ICESyms carried diverse accessory genes with an average of 34.6 % of genes unique to a given ICESym. Identification and comparative analysis of NodD symbiotic regulatory motifs – nod boxes – identified 21 branches across the NodD regulons. Four of these branches were associated with seven genes unique to the five GII ICESyms. The nod boxes preceding the host-range gene nodZ in GI and GII ICESyms were disparate, suggesting regulation of nodZ may differ between GI and GII ICESyms. The broad host-range determinant(s) of GII ICESyms that confer nodulation of L. pedunculatus are likely present amongst the 53 GII-unique genes identified.


Author(s):  
Atena Sadat Sombolestani ◽  
Ilse Cleenwerck ◽  
Margo Cnockaert ◽  
Wim Borremans ◽  
Anneleen D. Wieme ◽  
...  

A phylogenomic analysis based on 107 single-copy core genes revealed that three strains from sugar-rich environments, i.e. LMG 1728T, LMG 1731 and LMG 22058, represented a single, novel Gluconacetobacter lineage with Gluconacetobacter liquefaciens as nearest validly named neighbour. OrthoANIu and digital DNA–DNA hybridization analyses among these strains and Gluconacetobacter type strains confirmed that the three strains represented a novel Gluconacetobacter species. Biochemical characteristics and MALDI-TOF mass spectra allowed differentiation of this novel species from the type strains of G. liquefaciens and other closely related Gluconacetobacter species. We therefore propose to classify strains LMG 1728T, LMG 1731 and LMG 22058 in the novel species Gluconacetobacter dulcium sp. nov., with LMG 1728T (=CECT 30142T) as the type strain.


2014 ◽  
Vol 64 (Pt_12) ◽  
pp. 4068-4072 ◽  
Author(s):  
Young-Ok Kim ◽  
Sooyeon Park ◽  
Doo Nam Kim ◽  
Bo-Hye Nam ◽  
Sung-Min Won ◽  
...  

A Gram-stain-negative, aerobic, non-spore-forming, non-flagellated and rod-shaped or ovoid bacterial strain, designated RA1T, was isolated from faeces collected from Beluga whale (Delphinapterus leucas) in Yeosu aquarium, South Korea. Strain RA1T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences revealed that strain RA1T joins the cluster comprising the type strains of three species of the genus Amphritea , with which it exhibited 95.8–96.0 % sequence similarity. Sequence similarities to the type strains of other recognized species were less than 94.3 %. Strain RA1T contained Q-8 as the predominant ubiquinone and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C18 : 1ω7c and C16 : 0 as the major fatty acids. The major polar lipids of strain RA1T were phosphatidylethanolamine, phosphatidylglycerol, two unidentified lipids and one unidentified aminolipid. The DNA G+C content of strain RA1T was 47.4 mol%. The differential phenotypic properties, together with the phylogenetic distinctiveness, revealed that strain RA1T is separated from other species of the genus Amphritea . On the basis of the data presented, strain RA1T is considered to represent a novel species of the genus Amphritea , for which the name Amphritea ceti sp. nov. is proposed. The type strain is RA1T ( = KCTC 42154T = NBRC 110551T).


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3862-3866 ◽  
Author(s):  
Shi Peng ◽  
Dong Dan Hong ◽  
Yang Bing Xin ◽  
Li Ming Jun ◽  
Wei Ge Hong

A Gram-staining-negative, non-motile, catalase- and oxidase-positive strain, designated CCNWSP36-1T, was isolated from the nodule surface of soybean [Glycine max (L.) Merrill] cultivar Zhonghuang 13. The 16S rRNA gene sequence analysis clearly showed that the isolate represented a member of the genus Sphingobacterium . On the basis of pairwise comparisons of 16S rRNA gene sequences, strain CCNWSP36-1T showed 96.8 % similarity to Sphingobacterium nematocida CCTCC AB 2010390T and less than 95.2 % similarity to other members of the genus Sphingobacterium . Growth of strain CCNWSP36-1T occurred at 10–40 °C and at pH 5.0–9.0. The NaCl range (w/v) for growth was 0–4 %. The predominant isoprenoid quinone was MK-7. The polar lipids were phosphatidylethanolamine and several unidentified polar lipids. Sphingolipid was present. The major fatty acids were iso-C15 : 0 and summed feature 3 (comprising C16 : 1ω6c and/or C16 : 1ω7c). The G+C content of the genomic DNA was 41.1 mol%. As the physiological and biochemical characteristics of strain CCNWSP36-1T and the type strains of its closest phylogenetic neighbours showed clear differences, a novel species, Sphingobacterium yanglingense, is proposed. The type strain is CCNWSP36-1T ( = ACCC 19328T = JCM 30166T).


2012 ◽  
Vol 62 (Pt_11) ◽  
pp. 2589-2592 ◽  
Author(s):  
Hyo-Jin Lee ◽  
Song-Ih Han ◽  
Kyung-Sook Whang

A novel actinobacterium, designated strain BR-34T, was isolated from rhizosphere soil of bamboo (Phyllostachys nigro var. henonis) sampled in Damyang, Korea. The strain was found to have morphological and chemotaxonomic characteristics typical of the genus Catenulispora . The strain contained iso-C16 : 0 as the major fatty acid and MK-9(H4), MK-9(H6) and MK-9(H8) as major isoprenoid quinones. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain BR-34T formed a cluster separate from members of the genus Catenulispora and was related most closely to Catenulispora acidiphila ID139908T (97.4 % similarity), Catenulispora rubra Aac-30T (97.3 %), Catenulispora yoronensis TT N02-20T (97.3 %) and Catenulispora subtropica TT 99-48T (97 %). However, the level of DNA–DNA relatedness between strain BR-34T and C. acidiphila ID139908T was only 45.32 %. Based on DNA–DNA relatedness, morphological and phenotypic data, strain BR-34T could be distinguished from the type strains of phylogenetically related species. It is therefore considered to represent a novel species of the genus Catenulispora , for which the name Catenulispora graminis sp. nov. is proposed. The type strain is BR-34T ( = KACC 15070T = NBRC 107755T).


2013 ◽  
Vol 63 (Pt_9) ◽  
pp. 3280-3286 ◽  
Author(s):  
Iris Kuo ◽  
Jimmy Saw ◽  
Durrell D. Kapan ◽  
Stephanie Christensen ◽  
Kenneth Y. Kaneshiro ◽  
...  

Strain IK-1T was isolated from decaying tissues of the shrub Wikstroemia oahuensis collected on O‘ahu, Hawai‘i. Cells were rods that stained Gram-negative. Gliding motility was not observed. The strain was oxidase-negative and catalase-positive. Zeaxanthin was the major carotenoid. Flexirubin-type pigments were not detected. The most abundant fatty acids in whole cells of IK-1T grown on R2A were iso-C15 : 0 and one or both of C16 : 1ω7c and C16 : 1ω6c. Based on comparisons of the nucleotide sequence of the 16S rRNA gene, the closest neighbouring type strains were Flavobacterium rivuli WB 3.3-2T and Flavobacterium subsaxonicum WB 4.1-42T, with which IK-1T shares 93.84 and 93.67 % identity, respectively. The G+C content of the genomic DNA was 44.2 mol%. On the basis of distance from its nearest phylogenetic neighbours and phenotypic differences, the species Flavobacterium akiainvivens sp. nov. is proposed to accommodate strain IK-1T ( = ATCC BAA-2412T = CIP 110358T) as the type strain. The description of the genus Flavobacterium is emended to reflect the DNA G+C contents of Flavobacterium akiainvivens IK-1T and other species of the genus Flavobacterium described since the original description of the genus.


Sign in / Sign up

Export Citation Format

Share Document