scholarly journals Effective in vitro inactivation of SARS-CoV-2 by commercially available mouthwashes

2021 ◽  
Vol 102 (4) ◽  
Author(s):  
Katherine Davies ◽  
Hubert Buczkowski ◽  
Stephen R. Welch ◽  
Nicole Green ◽  
Damian Mawer ◽  
...  

Infectious SARS-CoV-2 can be recovered from the oral cavities and saliva of COVID-19 patients with potential implications for disease transmission. Reducing viral load in patient saliva using antiviral mouthwashes may therefore have a role as a control measure in limiting virus spread, particularly in dental settings. Here, the efficacy of SARS-CoV-2 inactivation by seven commercially available mouthwashes with a range of active ingredients were evaluated in vitro. We demonstrate ≥4.1 to ≥5.5 log10 reduction in SARS-CoV-2 titre following a 1 min treatment with commercially available mouthwashes containing 0.01–0.02 % stabilised hypochlorous acid or 0.58 % povidone iodine, and non-specialist mouthwashes with both alcohol-based and alcohol-free formulations designed for home use. In contrast, products containing 1.5 % hydrogen peroxide or 0.2 % chlorhexidine gluconate were ineffective against SARS-CoV-2 in these tests. This study contributes to the growing body of evidence surrounding virucidal efficacy of mouthwashes/oral rinses against SARS-CoV-2, and has important applications in reducing risk associated with aerosol generating procedures in dentistry and potentially for infection control more widely.

2020 ◽  
Author(s):  
Katherine Davies ◽  
Hubert Buczkowski ◽  
Stephen R Welch ◽  
Nicole Green ◽  
Damian Mawer ◽  
...  

ABSTRACTInfectious SARS-CoV-2 can be recovered from the oral cavities and saliva of COVID-19 patients with potential implications for disease transmission. Reducing viral load in patient saliva using antiviral mouthwashes may therefore have a role as a control measure in limiting virus spread, particularly in dental settings. Here, the efficacy of SARS-CoV-2 inactivation by seven commercially available mouthwashes with a range of active ingredients were evaluated in vitro. We demonstrate ≥4.1 to ≥5.5 log10 reduction in SARS-CoV-2 titre following a one minute treatment with commercially available mouthwashes containing 0.01-0.02% stabilised hypochlorous acid or 0.58% povidone iodine, and non-specialist mouthwashes with both alcohol-based and alcohol-free formulations designed for home use. In contrast, products containing 1.5% hydrogen peroxide or 0.2% chlorhexidine gluconate were ineffective against SARS-CoV-2 in these tests. This study contributes to the growing body of evidence surrounding virucidal efficacy of mouthwashes/oral rinses against SARS-CoV-2, and has important applications in reducing risk associated with aerosol generating procedures in dentistry and potentially for infection control more widely.


1988 ◽  
Vol 65 (5) ◽  
pp. 2349-2353 ◽  
Author(s):  
L. S. Terada ◽  
C. J. Beehler ◽  
A. Banerjee ◽  
J. M. Brown ◽  
M. A. Grosso ◽  
...  

Xanthine oxidase (XO) and xanthine dehydrogenase (XD) activities decreased in lungs isolated from rats and cultured lung endothelial cells that had been exposed to hyperoxia. Purified XO activity also decreased after addition of a variety of chemically generated O2 metabolite species (superoxide anion, hydrogen peroxide, hydroxyl radical, or hypochlorous acid), hypoxanthine, or stimulated neutrophils in vitro. XO inactivation by chemically, self-, or neutrophil-generated O2 metabolites was decreased by simultaneous addition of various O2 metabolite scavengers but not their inactive analogues. Since XO appears to contribute to a variety of biological processes and diseases, hyperoxia- or O2 metabolite-mediated decreases in XO activity may be an important cellular control mechanism.


2021 ◽  
Vol 16 (2) ◽  
pp. 119-130
Author(s):  
Christopher Stathis ◽  
Nikolas Victoria ◽  
Kristin Loomis ◽  
Shaun A Nguyen ◽  
Maren Eggers ◽  
...  

A review of nasal sprays and gargles with antiviral properties suggests that a number of commonly used antiseptics including povidone-iodine, Listerine®, iota-carrageenan and chlorhexidine should be studied in clinical trials to mitigate both the progression and transmission of SARS-CoV-2. Several of these antiseptics have demonstrated the ability to cut the viral load of SARS-CoV-2 by 3–4 log10 in 15–30 s  in vitro. In addition, hypertonic saline targets viral replication by increasing hypochlorous acid inside the cell. A number of clinical trials are in process to study these interventions both for prevention of transmission, prophylaxis after exposure, and to diminish progression by reduction of viral load in the early stages of infection.


2020 ◽  
Author(s):  
Evelina Statkute ◽  
Anzelika Rubina ◽  
Valerie B O’Donnell ◽  
David W. Thomas ◽  
Richard J. Stanton

AbstractThe ability of widely-available mouthwashes to inactivate SARS-CoV-2 in vitro was tested using a protocol capable of detecting a 5-log10 reduction in infectivity, under conditions mimicking the naso/oropharynx. During a 30 second exposure, two rinses containing cetylpyridinium-chloride and a third with ethanol/ethyl lauroyl arginate eliminated live virus to EN14476 standards (>4-log10 reduction), while others with ethanol/essential oils and povidone-iodine (PVP-I) eliminated virus by 2-3-log10. Chlorhexidine or ethanol alone displayed little or no ability to inactivate virus. Studies are warranted to determine whether these formulations can inactivate virus in the human oropharynx in vivo, and whether this might impact transmission risk.


Respiration ◽  
1997 ◽  
Vol 64 (1) ◽  
pp. 16-22 ◽  
Author(s):  
Adrian Gillissen ◽  
Malgorzata Jaworska ◽  
Birgit Schärling ◽  
Dominique van Zwoll ◽  
Gerhard Schultze-Werninghaus

Pteridines ◽  
2002 ◽  
Vol 13 (4) ◽  
pp. 140-143 ◽  
Author(s):  
Günter Weiss ◽  
Antonio Diez-Ruiz ◽  
Christian Murr ◽  
Igor Theur ◽  
Dietmar Fuchs

Abstract Upon stimulation with interferon-γ, a typical Thl cell-derived cytokine, human monocyte-dertved macrophages produce neopterin derivatives and in parallel degrade the essential amino acid L-tryptophan to L-kynurenine and subsequently to 3-hydroxyanthramlic acid and anthramlic acid. In parallel, stimulated macrophages produce reactive oxygen species such as hydrogen peroxide and hypochlorous acid. Earlier, neopterin and 7.8-dihydroneoptenn were found to enhance or decrease effects of reactive oxygen species in vitro, depending on concentration and on environmental condition. In this study, we investigated the ability of tryptophan and its metabolites to interfere with radicals in vitro by means of a chemiluminiseence-based assay system. When using hydrogen peroxide or chloramine Τ as source for radical formation. L-tryptophan and its catabolites reduced chennluminescence according to a dose-response relationship, 3-hydroxvanthranilic acid being the most efficient compound. Apart from L-kynurenme the scavenging effects of tryptophan and its metabolites were not affected by changes m pH from 5.5 to 7.5. Our data indicate that tryptophan degradation produces metabolites with a high scavenging ability for reactive oxygen and chlorine species, thereby establishing a self-regulatory mechanism to limit the tissue damage by reactive radicals produced by macrophages.


2016 ◽  
Vol 19 (4) ◽  
pp. 370-374 ◽  
Author(s):  
Karen A Moriello

Objectives The objective was to evaluate the antifungal efficacy of shampoo formulations of ketoconazole, miconazole or climbazole and accelerated hydrogen peroxide wash/rinse against Microsporum canis and Trichophyton species spores. Methods Lime sulfur (1:16)-treated control, enilconazole (1:100)-treated control, accelerated hydrogen peroxide (AHP 7%) 1:20 and a 1:10 dilution of shampoo formulations of miconazole 2%, miconazole 2%/chlorhexidine gluconate 2–2.3%, ketoconazole 1%/chlorhexidine 2%, climbazole 0.5%/chlorhexidine 3% and sterile water-untreated control were tested in three experiments. In the first, a suspension of infective spores and hair/scale fragments was incubated with a 1:10, 1:5 and 1:1 dilution of spores to test solutions for 10 mins. In the second, toothbrushes containing infected cat hair in the bristles were soaked and agitated in test solutions for 10 mins, rinsed, dried and then fungal cultured (n = 12×). In the third, a 3 min contact time combined with an AHP rinse was tested (n = 10×). Good efficacy was defined as no growth. Results Water controls grew >300 colony-forming units/plate and all toothbrushes were culture-positive prior to testing. For the suspension tests, all test products showed good efficacy. Miconazole 2%, ketoconazole 1% and AHP showed good efficacy after a 10 min contact time. Good efficacy was achieved with a shorter contact time (3 mins) only if combined with an AHP rinse. Conclusions and relevance Lime sulfur and enilconazole continued to show good efficacy. In countries or situations where these products cannot be used, shampoos containing ketoconazole, miconazole or climbazole are alternative haircoat disinfectants, with a 10 min contact time or 3 mins if combined with an AHP rinse.


2017 ◽  
Vol 6 (4) ◽  
pp. 3451-3454
Author(s):  
Fathima Mariyam Niyas ◽  
◽  
Preetham Prasad Nittla ◽  
Muralidharan ◽  
Varshitha A ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document