scholarly journals Review of the use of nasal and oral antiseptics during a global pandemic

2021 ◽  
Vol 16 (2) ◽  
pp. 119-130
Author(s):  
Christopher Stathis ◽  
Nikolas Victoria ◽  
Kristin Loomis ◽  
Shaun A Nguyen ◽  
Maren Eggers ◽  
...  

A review of nasal sprays and gargles with antiviral properties suggests that a number of commonly used antiseptics including povidone-iodine, Listerine®, iota-carrageenan and chlorhexidine should be studied in clinical trials to mitigate both the progression and transmission of SARS-CoV-2. Several of these antiseptics have demonstrated the ability to cut the viral load of SARS-CoV-2 by 3–4 log10 in 15–30 s  in vitro. In addition, hypertonic saline targets viral replication by increasing hypochlorous acid inside the cell. A number of clinical trials are in process to study these interventions both for prevention of transmission, prophylaxis after exposure, and to diminish progression by reduction of viral load in the early stages of infection.

Trials ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Farhan Raza Khan ◽  
Syed Murtaza Raza Kazmi ◽  
Najeeha Talat Iqbal ◽  
Junaid Iqbal ◽  
Syed Tariq Ali ◽  
...  

Abstract Objectives 1- To compare the effectiveness of 1% Hydrogen peroxide, 0.2% Povidone-Iodine, 2% hypertonic saline and a novel solution Neem extract (Azardirachta indica) in reducing intra-oral viral load in COVID-19 positive patients. 2- To determine the salivary cytokine profiles of IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ and IL- 17 among COVID-19 patients subjected to 1% Hydrogen peroxide, 0.2% Povidone-Iodine, 2% hypertonic saline or Neem extract (Azardirachta indica) based gargles. Trial design This will be a parallel group, quadruple blind-randomised controlled pilot trial with an add on laboratory based study. Participants A non-probability, purposive sampling technique will be followed to identify participants for this study. The clinical trial will be carried out at the Aga Khan University Hospital (AKUH), Karachi, Pakistan. The viral PCR tests will be done at main AKUH clinical laboratories whereas the immunological tests (cytokine analysis) will be done at the Juma research laboratory of AKUH. The inclusion criteria are laboratory-confirmed COVID-19 positive patients, male or female, in the age range of 18-65 years, with mild to moderate disease, already admitted to the AKUH. Subjects with low Glasgow coma score, with a history of radiotherapy or chemotherapy, who are more than 7 days past the onset of COVID- 19 symptoms, or intubated or edentulous patients will be excluded. Patients who are being treated with any form of oral or parenteral antiviral therapy will be excluded, as well as patients with known pre-existing chronic mucosal lesions such as lichen planus. Intervention and comparator Group A (n=10) patients on 10 ml gargle and nasal lavage using 0.2% Povidone-Iodine (Betadiene® by Aviro Health Inc./ Pyodine® by Brooks Pharma Inc.) for 20-30 seconds, thrice daily for 6 days. Group B (n=10) patients will be subjected to 10 ml gargle and nasal lavage using 1% Hydrogen peroxide (HP® by Karachi Chemicals Products Inc./ ActiveOxy® by Boumatic Inc.) for 20-30 seconds, thrice daily for 6 days. Group C will comprised of (n=10) subjects on 10ml gargle and nasal lavage using Neem extract solution (Azardirachta indica) formulated by Karachi University (chemistry department laboratories) for 20-30 seconds, thrice daily for 6 days. Group D (n=10) patients will use 2% hypertonic saline (Plabottle® by Otsuka Inc.) gargle and nasal lavage for a similar time period. Group E (n=10) will serve as positive controls. These will be given simple distilled water gargles and nasal lavage for 20-30 seconds, thrice daily for six days. For nasal lavage, a special douche syringe will be provided to each participant. Its use will be thoroughly explained by the data collection officer. After each use, the patient is asked not to eat, drink, or rinse their mouth for the next 30 minutes. Main outcomes The primary outcome is the reduction in the intra-oral viral load confirmed with real time quantitative PCR. Randomisation The assignment to the study group/ allocation will be done using the sealed envelope method under the supervision of Clinical Trial Unit (CTU) of Aga Khan University, Karachi, Pakistan. The patients will be randomised to their respective study group (1:1:1:1:1 allocation ratio) immediately after the eligibility assessment and consent administration is done. Blinding (masking) The study will be quadruple-blinded. Patients, intervention provider, outcome assessor and the data collection officer will be blinded. The groups will be labelled as A, B, C, D or E. The codes of the intervention will be kept in lock & key at the CTU and will only be revealed at the end of study or if the study is terminated prematurely. Numbers to be randomised (sample size) As there is no prior work on this research question, so no assumptions for the sample size calculation could be made. The present study will serve as a pilot trial. We intend to study 50 patients in five study groups with 10 patients in each study group. For details, please refer to Fig. 1 for details. Trial Status Protocol version is 7.0, approved by the department and institutional ethics committees and clinical trial unit of the university hospital. Recruitment is planned to start as soon as the funding is sanctioned. The total duration of the study is expected to be 6 months i.e. August 2020-January 2021. Trial registration This study protocol was registered at www.clinicaltrials.gov on 10 April 2020 NCT04341688. Full protocol The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2).


mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nathan E. Stone ◽  
Sierra A. Jaramillo ◽  
Ashley N. Jones ◽  
Adam J. Vazquez ◽  
Madison Martz ◽  
...  

ABSTRACT By late 2020, the coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), had caused tens of millions of infections and over 1 million deaths worldwide. A protective vaccine and more effective therapeutics are urgently needed. We evaluated a new poly(ADP-ribose) polymerase (PARP) inhibitor, stenoparib, that recently advanced to phase II clinical trials for treatment of ovarian cancer, for activity against human respiratory coronaviruses, including SARS-CoV-2, in vitro. Stenoparib exhibits dose-dependent suppression of SARS-CoV-2 multiplication and spread in Vero E6 monkey kidney and Calu-3 human lung adenocarcinoma cells. Stenoparib was also strongly inhibitory to the human seasonal respiratory coronavirus HCoV-NL63. Compared to remdesivir, which inhibits viral replication downstream of cell entry, stenoparib impedes entry and postentry processes, as determined by time-of-addition (TOA) experiments. Moreover, a 10 μM dosage of stenoparib—below the approximated 25.5 μM half-maximally effective concentration (EC50)—combined with 0.5 μM remdesivir suppressed coronavirus growth by more than 90%, indicating a potentially synergistic effect for this drug combination. Stenoparib as a stand-alone or as part of combinatorial therapy with remdesivir should be a valuable addition to the arsenal against COVID-19. IMPORTANCE New therapeutics are urgently needed in the fight against COVID-19. Repurposing drugs that are either already approved for human use or are in advanced stages of the approval process can facilitate more rapid advances toward this goal. The PARP inhibitor stenoparib may be such a drug, as it is currently in phase II clinical trials for the treatment of ovarian cancer and its safety and dosage in humans have already been established. Our results indicate that stenoparib possesses strong antiviral activity against SARS-CoV-2 and other coronaviruses in vitro. This activity appears to be based on multiple modes of action, where both pre-entry and postentry viral replication processes are impeded. This may provide a therapeutic advantage over many current options that have a narrower target range. Moreover, our results suggest that stenoparib and remdesivir in combination may be especially potent against coronavirus infection.


2020 ◽  
Vol 11 ◽  
Author(s):  
Bruno Silva Andrade ◽  
Fernanda de Souza Rangel ◽  
Naiane Oliveira Santos ◽  
Andria dos Santos Freitas ◽  
Wagner Rodrigues de Assis Soares ◽  
...  

The SARS-CoV-2 outbreak originally appeared in China in December 2019 and became a global pandemic in March 2020. This infectious disease has directly affected public health and the world economy. Several palliative therapeutic treatments and prophylaxis strategies have been used to control the progress of this viral infection, including pre-(PrEP) and post-exposure prophylaxis. On the other hand, research groups around the world are still studying novel drug prophylaxis and treatment using repurposing approaches, as well as vaccination options, which are in different pre-clinical and clinical testing phases. This systematic review evaluated 1,228 articles from the PubMed and Scopus indexing databases, following the Kitchenham bibliographic searching protocol, with the aim to list drug candidates, potentially approved to be used as new options for SARS-CoV-2 prophylaxis clinical trials and medical protocols. In searching protocol, we used the following keywords: “Covid-19 or SARS-CoV-2” or “Coronavirus or 2019 nCoV,” “prophylaxis,” “prophylactic,” “pre-exposure,” “COVID-19 or SARS-CoV-2 Chemoprophylaxis,” “repurposed,” “strategies,” “clinical,” “trials,” “anti-SARS-CoV-2,” “anti-covid-19,” “Antiviral,” “Therapy prevention in vitro,” in cells “and” human testing. After all protocol steps, we selected 60 articles that included: 15 studies with clinical data, 22 studies that used in vitro experiments, seven studies using animal models, and 18 studies performed with in silico experiments. Additionally, we included more 22 compounds between FDA approved drugs and drug-like like molecules, which were tested in large-scale screenings, as well as those repurposed approved drugs with new mechanism of actions. The drugs selected in this review can assist clinical studies and medical guidelines on the rational repurposing of known antiviral drugs for COVID-19 prophylaxis.


2021 ◽  
Vol 36 (5) ◽  
pp. 238-241
Author(s):  
Katherine M. Benson ◽  
Amalia A. Mancini ◽  
Michael R. Brodeur

Topical povidone-iodine (PVP-I) is currently being considered as a potential preventive measure against the spread of COVID-19. Diluted PVP-I solutions have been historically used in Asia to treat upper respiratory tract infections (URTIs) by decreasing the bacterial and viral load on oropharyngeal mucosa to decrease the transmission of diseases. Efficacy of gargling 0.23% PVP-I mouthwash in Japan demonstrated to be efficacious in lowering the prevalence of URTIs when compared with placebo. The 0.23% concentration was used in vitro on severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus, which produced undetectable results after 30 seconds of exposure. Additionally, a recent study in 2020 proved the efficacy of PVP-I 0.45%-10% in reducing COVID-19 (SARS-CoV 2) viral load in vitro. Numerous clinical trials are being conducted to determine if there is a decrease in viral load, and thus transmission, when using oral or nasal topical PVP-I in COVID-19 patients. Because of the current lack of evidence for the use of PVP-I in vivo with COVID-19, it is recommended to await the clinical trial results before initiating this practice.


2015 ◽  
Vol 36 (42) ◽  
pp. 2909-2919 ◽  
Author(s):  
Maarten F Corsten ◽  
Ward Heggermont ◽  
Anna-Pia Papageorgiou ◽  
Sophie Deckx ◽  
Aloys Tijsma ◽  
...  

Abstract Aims Viral myocarditis (VM) is an important cause of heart failure and sudden cardiac death in young healthy adults; it is also an aetiological precursor of dilated cardiomyopathy. We explored the role of the miR-221/-222 family that is up-regulated in VM. Methods and results Here, we show that microRNA-221 (miR-221) and miR-222 levels are significantly elevated during acute VM caused by Coxsackievirus B3 (CVB3). Both miRs are expressed by different cardiac cells and by infiltrating inflammatory cells, but their up-regulation upon myocarditis is mostly exclusive for the cardiomyocyte. Systemic inhibition of miR-221/-222 in mice increased cardiac viral load, prolonged the viraemic state, and strongly aggravated cardiac injury and inflammation. Similarly, in vitro, overexpression of miR-221 and miR-222 inhibited enteroviral replication, whereas knockdown of this miR-cluster augmented viral replication. We identified and confirmed a number of miR-221/-222 targets that co-orchestrate the increased viral replication and inflammation, including ETS1/2, IRF2, BCL2L11, TOX, BMF, and CXCL12. In vitro inhibition of IRF2, TOX, or CXCL12 in cardiomyocytes significantly dampened their inflammatory response to CVB3 infection, confirming the functionality of these targets in VM and highlighting the importance of miR-221/-222 as regulators of the cardiac response to VM. Conclusions The miR-221/-222 cluster orchestrates the antiviral and inflammatory immune response to viral infection of the heart. Its inhibition increases viral load, inflammation, and overall cardiac injury upon VM.


2019 ◽  
Author(s):  
Veronika Bernhauerová ◽  
Veronica V. Rezelj ◽  
Laura I. Levi ◽  
Marco Vignuzzi

AbstractChikungunya and Zika viruses are arthropod-borne viruses that pose significant threat to public health. Experimental data show that duringin vitroinfection both viruses exhibit qualitatively distinct replication cycle kinetics. Chikungunya viral load rapidly accumulates within the first several hours post infection whereas Zika virus begins to increase at much later times. We sought to characterize these qualitatively distinctin vitrokinetics of chikungunya and Zika viruses by fitting a family of mathematical models to time course viral load datasets. We demonstrate that the standard viral kinetic model, which considers that new infections result only from free virus penetrating susceptible cells, does not fit experimental data as well as a model in which the number of virus-infected cells is the primary determinant of infection rate. We provide biologically meaningful quantifications of the main viral kinetic parameters and show that our results support cell-to-cell or localized transmission as a significant contributor to viral infection with chikungunya and Zika viruses.ImportanceMathematical modeling has become a useful tool to tease out information about virus-host interactions and thus complements experimental work in characterizing and quantifying processes within viral replication cycle. Importantly, mathematical models can fill in incomplete data sets and identify key parameters of infection, provided the appropriate model is used. Thein vitrotime course dynamics of mosquito transmitted viruses, such as chikungunya and Zika, have not been studied by mathematical modeling and thus limits our knowledge about quantitative description of the individual determinants of viral replication cycle. This study employs dynamical modeling framework to show that the rate at which cells become virus-infected is proportional to the number or virus-infected cells rather than free extracellular virus in the milieu, a widely accepted assumption in models of viral infections. Using the refined mathematical model in combination with viral load data, we provide quantification of the main drivers of chikungunya and Zikain vitrokinetics. Together, our results bring quantitative understanding of the basic components of chikungunya and Zika virus dynamics.


2021 ◽  
Vol 15 ◽  
Author(s):  
Srishti Kashyap ◽  
Revathy Nadhan ◽  
Danny N. Dhanasekaran

Coronavirus Disease 2019 (COVID-19) is a global pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2). The rising number of cases of this highly transmissible infection has pressed for the urgent need to find effective therapeutics. The life cycle of SARS-CoV-2 includes the viral entry, viral replication, viral assembly and release. The symptoms associated with viral infection often leads to fatal outcome with pneumonia, myocarditis, acute respiratory distress syndrome, hypercoagulability, and/or multi-organ failure. Recent studies have reported that phytochemicals such as emodin, epigallocatechin gallate, and berberine could, albeit modestly, inhibit different stages of SARS-CoV-2 life cycle. The phytochemicals have been shown to disrupt viral infection and replication by blocking viral-surface spike protein binding to entry receptor angiotensin-converting enzyme (ACE2), inhibiting viral membrane fusion with host cells, inhibiting RNA-dependent RNA polymerase involved in viral replication, and/or pathological host- responses in vitro. The focus of this review is to evaluate the efficacies of these phytochemicals on inhibiting SARS-CoV-2 viral infection, growth, or disease progression as well as to provide a perspective on the potential use of these phytochemicals in the development of novel therapeutics against SARS-CoV-2


Author(s):  
Shufeng Liu ◽  
Christopher Z. Lien ◽  
Prabhuanand Selvaraj ◽  
Tony T. Wang

AbstractThe global pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or 2019-nCoV) has prompted multiple clinical trials to jumpstart search for anti-SARS-CoV-2 therapies from existing drugs, including those with reported in vitro efficacies as well as those ones that are not known to inhibit SARS-CoV-2, such as ritonavir/lopinavir and favilavir. Here we report that after screening 19 antiviral drugs that are either in clinical trials or with proposed activity against SARS-CoV-2, remdesivir was the most effective. Chloroquine only effectively protected virus-induced cytopathic effect at around 30 µM with a therapeutic index of 1.5. Our findings also suggest that velpatasvir, ledipasvir, ritonavir, litonavir, lopinavir, favilavir, sofosbuvir, danoprevir, and pocapavir do not have direct antiviral effect.


Viruses ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 764
Author(s):  
Melissa Stunnenberg ◽  
Lisa van Pul ◽  
Joris K. Sprokholt ◽  
Karel A. van Dort ◽  
Sonja I. Gringhuis ◽  
...  

The mitochondrial antiviral protein MAVS is a key player in the induction of antiviral responses; however, human immunodeficiency virus 1 (HIV-1) is able to suppress these responses. Two linked single nucleotide polymorphisms (SNPs) in the MAVS gene render MAVS insensitive to HIV-1-dependent suppression, and have been shown to be associated with a lower viral load at set point and delayed increase of viral load during disease progression. Here, we studied the underlying mechanisms involved in the control of viral replication in individuals homozygous for this MAVS genotype. We observed that individuals with the MAVS minor genotype had more stable total CD4+ T cell counts during a 7-year follow up and had lower cell-associated proviral DNA loads. Genetic variation in MAVS did not affect immune activation levels; however, a significantly lower percentage of naïve CD4+ but not CD8+ T cells was observed in the MAVS minor genotype. In vitro HIV-1 infection of peripheral blood mononuclear cells (PBMCs) from healthy donors with the MAVS minor genotype resulted in decreased viral replication. Although the precise underlying mechanism remains unclear, our data suggest that the protective effect of the MAVS minor genotype may be exerted by the initiation of local innate responses affecting viral replication and CD4+ T cell susceptibility.


Sign in / Sign up

Export Citation Format

Share Document