Genetic relatedness of Streptococcus dysgalactiae isolates causing recurrent bacteraemia

Author(s):  
Erik Senneby ◽  
Björn Hallström ◽  
Magnus Rasmussen

Introduction. Streptococcus dysgalactiae subspecies equisimilis (SDSE) is becoming increasingly recognized as an important human pathogen. Recurrent bacteremia with SDSE has been described previously. Aim. The aims of the study were to establish the genetic relatedness of SDSE isolates with emm-type stG643 that had caused recurrent bacteraemia in three patients and to search for signs of horizontal gene transfer of the emm gene in a collection of SDSE stG643 genomes. Hypothesis. Recurring SDSE bacteremia is caused by the same clone in one patient. Methodology. Whole genome sequencing of 22 clinical SDSE stG643 isolates was performed, including three paired blood culture isolates and sixteen isolates from various sites. All assemblies were aligned to a reference assembly and SNPs were extracted. A total of 53 SDSE genomes were downloaded from GenBank. Two phylogenetic trees, including all 75 SDSE isolates, were created. One tree was based on the emm gene only and one tree was based on all variable positions in the genomes. Results. The genomes from the three pairs of SDSE isolates showed high sequence similarity (1–17 SNPs difference between the pairs), whereas the median SNP difference between the 22 isolates in our collection was 1694 (range 1–11257). The paired isolates were retrieved with 7–53 months between episodes. The 22 SDSE isolates from our collection formed a cluster in the phylogenetic tree based on the emm gene, while they were more scattered in the tree based on all variable positions. Conclusions. Our results show that the paired isolates were of the same clonal origin, which in turn supports carriage between bacteraemia episodes. The phylogenetic analysis indicates that horizontal gene transfer of the emm-gene between some of the SDSE isolates has occurred.

2014 ◽  
Vol 64 (Pt_12) ◽  
pp. 4068-4072 ◽  
Author(s):  
Young-Ok Kim ◽  
Sooyeon Park ◽  
Doo Nam Kim ◽  
Bo-Hye Nam ◽  
Sung-Min Won ◽  
...  

A Gram-stain-negative, aerobic, non-spore-forming, non-flagellated and rod-shaped or ovoid bacterial strain, designated RA1T, was isolated from faeces collected from Beluga whale (Delphinapterus leucas) in Yeosu aquarium, South Korea. Strain RA1T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences revealed that strain RA1T joins the cluster comprising the type strains of three species of the genus Amphritea , with which it exhibited 95.8–96.0 % sequence similarity. Sequence similarities to the type strains of other recognized species were less than 94.3 %. Strain RA1T contained Q-8 as the predominant ubiquinone and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C18 : 1ω7c and C16 : 0 as the major fatty acids. The major polar lipids of strain RA1T were phosphatidylethanolamine, phosphatidylglycerol, two unidentified lipids and one unidentified aminolipid. The DNA G+C content of strain RA1T was 47.4 mol%. The differential phenotypic properties, together with the phylogenetic distinctiveness, revealed that strain RA1T is separated from other species of the genus Amphritea . On the basis of the data presented, strain RA1T is considered to represent a novel species of the genus Amphritea , for which the name Amphritea ceti sp. nov. is proposed. The type strain is RA1T ( = KCTC 42154T = NBRC 110551T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1819-1824 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Chul-Hyung Kang ◽  
Song-Gun Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, aerobic and pleomorphic bacterium, designated BS-W13T, was isolated from a tidal flat on the South Sea, South Korea, and its taxonomic position was investigated using a polyphasic approach. Strain BS-W13T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 1.0–2.0 % (w/v) NaCl. Neighbour-joining and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain BS-W13T clustered with the type strain of Seohaeicola saemankumensis , showing the highest sequence similarity (95.96 %) to this strain. Strain BS-W13T exhibited 16S rRNA gene sequence similarity values of 95.95, 95.91, 95.72 and 95.68 % to the type strains of Sulfitobacter donghicola , Sulfitobacter porphyrae , Sulfitobacter mediterraneus and Roseobacter litoralis , respectively. Strain BS-W13T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The polar lipid profile of strain BS-W13T, containing phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid as major components, was distinguishable from those of some phylogenetically related taxa. The DNA G+C content of strain BS-W13T was 58.1 mol%. The phylogenetic data and differential chemotaxonomic and other phenotypic properties revealed that strain BS-W13T constitutes a novel genus and species within family Rhodobacteraceae of the class Alphaproteobacteria , for which the name Pseudoseohaeicola caenipelagi gen. nov., sp. nov. is proposed. The type strain is BS-W13T ( = KCTC 42349T = CECT 8724T).


2015 ◽  
Vol 65 (Pt_5) ◽  
pp. 1622-1627 ◽  
Author(s):  
Zhi-Ping Zhong ◽  
Ying Liu ◽  
Ting-Ting Hou ◽  
Yu-Guang Zhou ◽  
Hong-Can Liu ◽  
...  

A Gram-staining-negative bacterium, strain TS-T86T, was isolated from Lake Tuosu, a saline lake (salinity 5.4 %, w/w) in Qaidam basin, China. Its taxonomic position was determined by using a polyphasic approach. Strain TS-T86T was strictly heterotrophic, aerobic and catalase- and oxidase-positive. Cells were non-spore-forming, non-motile rods, 0.4–0.6 µm wide and 1.2–2.3 µm long. Growth was observed in the presence of 0–9.0 % (w/v) NaCl (optimum, 2.0 %), at 4–35 °C (optimum, 25 °C) and at pH 7.0–10.5 (optimum, pH 8.5–9.0). Strain TS-T86T contained MK-7 as the predominant respiratory quinone. The major fatty acids (>10 %) were iso-C15 : 1 G, iso-C15 : 0, iso-C17 : 1ω9c, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c). The polar lipids consisted of phosphatidylethanolamine, an unknown phospholipid, six unidentified aminolipids and two uncharacterized lipids. The DNA G+C content was 35 mol% (T m). Phylogenetic trees based on 16S rRNA gene sequences showed that strain TS-T86T was associated with the genus Belliella , and showed the highest sequence similarity to Belliella baltica BA134T (98.5 %) and then to Belliella kenyensis No.164T (95.7 %) and Belliella pelovolcani CC-SAL-25T (95.3 %). DNA–DNA relatedness of strain TS-T86T to Belliella baltica DSM 15883T was 32±3 %. It is concluded that strain TS-T86T represents a novel species of the genus Belliella , for which the name Belliella aquatica sp. nov. is proposed. The type strain is TS-T86T ( = CGMCC 1.12479T = JCM 19468T).


Microbiology ◽  
2005 ◽  
Vol 151 (7) ◽  
pp. 2465-2475 ◽  
Author(s):  
M. Ángeles Tormo ◽  
Erwin Knecht ◽  
Friedrich Götz ◽  
Iñigo Lasa ◽  
José R. Penadés

The biofilm-associated protein (Bap) is a surface protein implicated in biofilm formation by Staphylococcus aureus isolated from chronic mastitis infections. The bap gene is carried in a putative composite transposon inserted in SaPIbov2, a mobile staphylococcal pathogenicity island. In this study, bap orthologue genes from several staphylococcal species, including Staphylococcus epidermidis, Staphylococcus chromogenes, Staphylococcus xylosus, Staphylococcus simulans and Staphylococcus hyicus, were identified, cloned and sequenced. Sequence analysis comparison of the bap gene from these species revealed a very high sequence similarity, suggesting the horizontal gene transfer of SaPIbov2 amongst them. However, sequence analyses of the flanking region revealed that the bap gene of these species was not contained in the SaPIbov2 pathogenicity island. Although they did not contain the icaADBC operon, all the coagulase-negative staphylococcal isolates harbouring bap were strong biofilm producers. Disruption of the bap gene in S. epidermidis abolished its capacity to form a biofilm, whereas heterologous complementation of a biofilm-negative strain of S. aureus with the Bap protein from S. epidermidis bestowed the capacity to form a biofilm on a polystyrene surface. Altogether, these results demonstrate that Bap orthologues from coagulase-negative staphylococci induce an alternative mechanism of biofilm formation that is independent of the PIA/PNAG exopolysaccharide.


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1793-1799 ◽  
Author(s):  
Chul-Hyung Kang ◽  
Soo-Young Lee ◽  
Jung-Hoon Yoon

A Gram-staining-negative, non-flagellated, non-gliding, aerobic, rod-shaped bacterium, designated DPS-8T, was isolated from coastal sediment of Geoje island in the South Sea, South Korea, and subjected to a polyphasic study. Strain DPS-8T grew optimally at 30 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain DPS-8T joined the clade comprising the type strains of Winogradskyella species with a high bootstrap resampling value of 93.5 %. Phylogenetic trees constructed using maximum-likelihood and maximum-parsimony algorithms revealed that strain DPS-8T belonged to the genus Winogradskyella . Strain DPS-8T exhibited 94.1–96.5 % 16S rRNA gene sequence similarity to the type strains of species of the genus Winogradskyella . Strain DPS-8T contained MK-6 as the predominant menaquinone and iso-C15 : 1 G, iso-C15 : 0, iso-C17 : 0 3-OH and C16 : 1ω7c and/or iso-C15 : 0 2-OH as the major fatty acids. The major polar lipids of strain DPS-8T were phosphatidylethanolamine and two unidentified lipids. The DNA G+C content of strain DPS-8T was 34.7 mol%. Differential phenotypic properties, together with its phylogenetic distinctiveness, revealed that strain DPS-8T is separate from recognized species of the genus Winogradskyella . On the basis of the data presented, strain DPS-8T is considered to represent a novel species of the genus Winogradskyella , for which the name Winogradskyella litorisediminis sp. nov. is proposed. The type strain is DPS-8T ( = KCTC 32110T = CCUG 62215T).


2013 ◽  
Vol 63 (Pt_10) ◽  
pp. 3710-3714 ◽  
Author(s):  
Ying-Yi Huo ◽  
Lin Xu ◽  
Chun-Sheng Wang ◽  
Jun-Yi Yang ◽  
Hong You ◽  
...  

A Gram-stain-negative, aerobic, moderately halophilic bacterium, strain DY53T, was isolated from a deep-seawater sample collected from the eastern Pacific Ocean. This isolate grew in the presence of 0.5–10.0 % (w/v) NaCl, at pH 6.5–8.5 and at 15–40 °C. The optimum NaCl concentration for growth of DY53T was 2 % (w/v) at 35 °C. Chemotaxonomic analysis showed MK-7 as the predominant menaquinone and iso-C15 : 0, summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C15 : 1 G, iso-C15 : 0 3-OH and iso-C17 : 0 3-OH as major cellular fatty acids. The genomic DNA G+C content was 40.8 mol%. Phylogenetic trees based on 16S rRNA gene sequences revealed that Fabibacter halotolerans UST030701-097T was the closest neighbour, with 96.7 % sequence similarity. Based on phylogenetic, chemotaxonomic and phenotypic data, we propose that strain DY53T represents a novel species of the genus Fabibacter , for which the name Fabibacter pacificus sp. nov. is proposed. The type strain is DY53T( = CGMCC 1.12402T = JCM 18885T).


2013 ◽  
Vol 63 (Pt_11) ◽  
pp. 3950-3957 ◽  
Author(s):  
Sofie E. De Meyer ◽  
Margo Cnockaert ◽  
Julie K. Ardley ◽  
Garth Maker ◽  
Ron Yates ◽  
...  

Seven Gram-stain-negative, rod-shaped bacteria were isolated from Lebeckia ambigua root nodules and authenticated on this host. Based on the 16S rRNA gene phylogeny, they were shown to belong to the genus Burkholderia , with the representative strain WSM5005T being most closely related to Burkholderia tuberum (98.08 % sequence similarity). Additionally, these strains formed a distinct group in phylogenetic trees based on the housekeeping genes gyrB and recA. Chemotaxonomic data including fatty acid profiles and analysis of respiratory quinones supported the assignment of the strains to the genus Burkholderia . Results of DNA–DNA hybridizations, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of our strains from the closest species of the genus Burkholderia with a validly published name. Therefore, these strains represent a novel species for which the name Burkholderia sprentiae sp. nov. (type strain WSM5005T = LMG 27175T = HAMBI 3357T) is proposed.


2013 ◽  
Vol 63 (Pt_9) ◽  
pp. 3175-3179 ◽  
Author(s):  
Kyung June Yim ◽  
Myunglip Lee ◽  
Hae-Won Lee ◽  
Kil-Nam Kim ◽  
Hye-Mi Yang ◽  
...  

A Gram-stain-negative bacterium, designated strain CBA4601T, was isolated from a seawater sample obtained off the coast of Jeju Island, Korea. The organism grew in the presence of 0–4 % (w/v) NaCl and at 20–35 °C and pH 7.0–9.0, with optimal growth in 2 % NaCl, and at 25 °C and pH 8.0. Phylogenetic trees based on 16S rRNA gene sequences showed that strain CBA4601T was related to the genus Ferrimonas within the class Gammaproteobacteria . 16S rRNA gene sequence similarity between strain CBA4601T and Ferrimonas marina A4D-4T, the most closely related species, was 96.9 %. The G+C content of the genomic DNA from strain CBA4601T was 54.2 mol%, and the isoprenoid quinones menaquinone 7 (MK-7), ubiquinone 7 (Q-7) and ubiquinone 8 (Q-8) were detected. The major fatty acids were C17 : 1ω8c, C18 : 1ω9c and C16 : 0, and the major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and an unidentified ninhydrin-positive phospholipid. On the basis of this taxonomic study using a polyphasic approach, strain CBA4601T represents a novel species of the genus Ferrimonas , for which the name Ferrimonas pelagia sp. nov. is proposed. The type strain is CBA4601T ( = KACC 16695T = KCTC 32029T = JCM 18401T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1001-1006 ◽  
Author(s):  
Soo-Young Lee ◽  
Sooyeon Park ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, non-spore-forming, rod-shaped bacterial strain, BB-Mw22T, was isolated from a tidal flat sediment of the South Sea in South Korea. It grew optimally at 30–37 °C, at pH 7.0–7.5 and in the presence of 2–3 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain BB-Mw22T belonged to the genus Kangiella and the cluster comprising Kangiella species and strain BB-Mw22T was clearly separated from other taxa. Strain BB-Mw22T exhibited 95.3–98.7 % 16S rRNA gene sequence similarity to the type strains of recognized Kangiella species. Strain BB-Mw22T contained Q-8 as the predominant ubiquionone and iso-C15 : 0 and iso-C11 : 0 3-OH as the major fatty acids. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine and one unidentified aminolipid. The DNA G+C content of strain BB-Mw22T was 48.9 mol%, and its mean DNA–DNA hybridization values with Kangiella geojedonensis YCS-5T, Kangiella japonica JCM 16211T and Kangiella taiwanensis JCM 17727T were 14–28 %. Phylogenetic and genetic distinctiveness and differential phenotypic properties revealed that strain BB-Mw22T is distinguishable from all recognized Kangiella species. On the basis of the data presented, strain BB-Mw22T is considered to represent a novel species of the genus Kangiella , for which the name Kangiella sediminilitoris sp. nov. is proposed. The type strain is BB-Mw22T ( = KCTC 23892T  = CCUG 62217T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1045-1050 ◽  
Author(s):  
Ying Xu ◽  
Xin-Peng Tian ◽  
Yu-Juan Liu ◽  
Jie Li ◽  
Chang-Jin Kim ◽  
...  

A marine bacterium, designated SCSIO 03483T, was isolated from a marine sediment sample collected from the Nansha Islands in the South China Sea. The strain produced roundish colonies with diffusible yellow-coloured pigment on nutrient agar medium or marine agar 2216. Optimal growth occurred in the presence of 0–4 % (w/v) NaCl, at pH 7.0 and a temperature range of 28–37 °C. 16S rRNA gene sequence analysis indicated that the isolate belonged to the family Flavobacteriaceae and showed relatively high sequence similarity with Imtechella halotolerans K1T (92.7 %). Phylogenetic analysis based on nearly complete 16S rRNA gene sequences revealed that the isolate shared a lineage with members of the genera Imtechella , Joostella and Zhouia . Phospholipids were phosphatidylethanolamine, two unidentified aminolipids and three unknown polar lipids. The major respiratory quinone was MK-6 and the major fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1ω6c/C16 : 1ω7c). The DNA G+C content of strain SCSIO 03483T was 38.4 mol%. On the basis of phenotypic, chemotaxonomic and molecular data, strain SCSIO 03483T represents a novel species in a new genus in the family Flavobacteriaceae , for which the name Sinomicrobium oceani gen. nov., sp. nov. is proposed. The type strain of Sinobacterium oceani is SCSIO 03483T ( = KCTC 23994T = CGMCC 1.12145T).


Sign in / Sign up

Export Citation Format

Share Document