Correlation of cefpodoxime susceptibility with cephalothin and cefuroxime for urinary tract isolates

2014 ◽  
Vol 63 (2) ◽  
pp. 218-221 ◽  
Author(s):  
David A. Bookstaver ◽  
Christopher M. Bland ◽  
Mitchell W. Woodberry ◽  
Karon B. Mansell

This study attempted to determine whether cefuroxime was superior to cephalothin as a surrogate marker for cefpodoxime among urinary tract isolates. The MicroScan system (Siemens) was used to determine susceptibility for cephalothin and cefuroxime on consecutive cultures with a colony count of ≥50 000 organisms. Simultaneously, an Etest (bioMérieux) for cefpodoxime was conducted. The cefpodoxime interpretation was compared to that of the other two agents, and the categorical agreement was calculated, defined as the percentage of identical susceptibility interpretations. Cefuroxime (83 %) had a significantly higher categorical agreement than cephalothin (63 %) among 300 isolates (P<0.01). The major error rate was 16 % for cephalothin and 3 % for cefuroxime. The very major error rate was 7 % for cephalothin and 14 % for cefuroxime among the 14 cefpodoxime-resistant isolates. For Escherichia coli, the major error rates were 15 % and 1 % for cephalothin and cefuroxime, respectively. Very major error rates were 9 % for both agents. Cefuroxime was a better predictor of cefpodoxime susceptibility than cephalothin, and appears to be the preferred surrogate agent for the MicroScan system, particularly for E. coli.

2019 ◽  
Vol 12 (1) ◽  
pp. 3754-3761 ◽  
Author(s):  
Kendra M Meer ◽  
Paul G Nelson ◽  
Kun Xiong ◽  
Joanna Masel

Abstract Errors in gene transcription can be costly, and organisms have evolved to prevent their occurrence or mitigate their costs. The simplest interpretation of the drift barrier hypothesis suggests that species with larger population sizes would have lower transcriptional error rates. However, Escherichia coli seems to have a higher transcriptional error rate than species with lower effective population sizes, for example Saccharomyces cerevisiae. This could be explained if selection in E. coli were strong enough to maintain adaptations that mitigate the consequences of transcriptional errors through robustness, on a gene by gene basis, obviating the need for low transcriptional error rates and associated costs of global proofreading. Here, we note that if selection is powerful enough to evolve local robustness, selection should also be powerful enough to locally reduce error rates. We therefore predict that transcriptional error rates will be lower in highly abundant proteins on which selection is strongest. However, we only expect this result when error rates are high enough to significantly impact fitness. As expected, we find such a relationship between expression and transcriptional error rate for non-C→U errors in E. coli (especially G→A), but not in S. cerevisiae. We do not find this pattern for C→U changes in E. coli, presumably because most deamination events occurred during sample preparation, but do for C→U changes in S. cerevisiae, supporting the interpretation that C→U error rates estimated with an improved protocol, and which occur at rates comparable with E. coli non-C→U errors, are biological.


2019 ◽  
Author(s):  
K.M. Meer ◽  
P.G. Nelson ◽  
K. Xiong ◽  
J. Masel

AbstractErrors in gene transcription can be costly, and organisms have evolved to prevent their occurrence or mitigate their costs. The simplest interpretation of the drift barrier hypothesis suggests that species with larger population sizes would have lower transcriptional error rates. However, Escherichia coli seems to have a higher transcriptional error rate than species with lower effective population sizes, e.g. Saccharomyces cerevisiae. This could be explained if selection in E. coli were strong enough to maintain adaptations that mitigate the consequences of transcriptional errors through robustness, on a gene by gene basis, obviating the need for low transcriptional error rates and associated costs of global proofreading. Here we note that if selection is powerful enough to evolve local robustness, selection should also be powerful enough to locally reduce error rates. We therefore predict that transcriptional error rates will be lower in highly abundant proteins on which selection is strongest. However, we only expect this result when error rates are high enough to significantly impact fitness. As expected, we find such a relationship between expression and transcriptional error rate for non C➔U errors in E. coli (especially G➔A), but not in S. cerevisiae. We do not find this pattern for C➔U changes in E. coli, presumably because most deamination events occurred during sample preparation, but do for C➔U changes in S. cerevisiae, supporting the interpretation that C➔U error rates estimated with an improved protocol, and which occur at rates comparable to E. coli non C➔U errors, are biological.


2017 ◽  
Vol 45 (1) ◽  
pp. 8
Author(s):  
Silvio Luís da Silveira Rocha ◽  
Thales Quedi Furian ◽  
Karen Apellanis Borges ◽  
Daniela Tonini da Rocha ◽  
Hamilton Luiz de Souza Moraes ◽  
...  

Background: Avian pathogenic E. coli (APEC) and uropathogenic E. coli (UPEC) are responsible, respectively, for avian colibacillosis and for 80% of urinary tract infections in humans. E. coli control is difficult due to the absence of a reliable method to differentiate pathogenic and commensal strains. Genetic similarity between APEC and UPEC suggests a common ancestral origin and the capability of potentially pathogenic strains to affect human health. The classification in phylogenetic groups facilitates the identification of pathogenic strains. The objective of this work was to classify APEC and UPEC E. coli strains into phylogenetic groups and to associate it with in vivo pathogenicity.Materials, Methods & Results: 460 APEC and 450 UPEC strains, stored in BHI with glycerol at -80°C, were selected. APEC strains were isolated from cellulitis, respiratory tract and poultry litter of broiler flocks from Southern Brazil. The UPEC strains from urinary tract infection were provided by a hospital in Porto Alegre. After DNA extraction, APEC and UPEC strains were classified into four phylogenetic groups (A, B1, B2 and D) by a multiplex-PCR protocol for the detection of the chuA and yjaA genes and the TspE4.C2 DNA fragment. Phylogenetic groups were associated with pathogenicity indexes (PI), presented on a scale of 0 to 10, which were previously obtained through the inoculation of APEC strains in one-day-old chicks. Phylogenetic groups were also associated with the presence of 38 virulence-associated genes. The multiplex-PCR protocol was able to differentiate 100% of the APEC and UPEC strains in the four phylogenetic groups. The majority of APEC strains were classified into phylogenetic groups D (31.1%) and B2 (24.1%). On the other hand, the majority of UPEC strains were classified into B2 (53.6%). Among APEC strains, five genes (crl, mat, ompA, fimC and fimH) were detected in more than 80% of strains in all groups. Some genes showed a significant association with specific phylogenetic groups. Gene ireA was exclusively to group D, kpsMT II and cvaC to B2 and sat was exclusively to B1. Four genes (ireA, sfa/focCD, ibeA, tsh) were detected in more than 70% of UPEC strains in all phylogenetic groups. Gene iroN1 showed a significant association exclusively to group A, and iucD, papC and irp2 to B1 group. APEC isolated from poultry litter presented significantly lower PIs than those isolated from cellulitis and from birds with respiratory signs. The average PI from B2 group was significantly higher than that of D group. In addition, the PIs of the two groups were significantly higher than those of A and B1.Discussion: The high frequency of UPEC classified as B2 is in agreement with the literature. More virulent strains are usually classified into B2 group and some of them may be classified into D group. On the other hand, the distribution of APEC isolates in phylogenetic groups is characterized by variability and it is usually related to the origin of the isolates, as observed in the study. Since E. coli strains isolated from human and poultry face similar challenges in infection establishment of extraintestinal sites, they may share some virulence genes. In this study, most of the 38 genes presented a high frequency in both APEC and UPEC strains. As the distribution of APEC strains in phylogenetic groups showed a significant association with pathogenicity, multiplex-PCR becomes an important tool for screening the pathogenicity of strains isolated from the poultry production chain.


2021 ◽  
Vol 9 (2) ◽  
pp. 310
Author(s):  
Masayuki Hashimoto ◽  
Yi-Fen Ma ◽  
Sin-Tian Wang ◽  
Chang-Shi Chen ◽  
Ching-Hao Teng

Uropathogenic Escherichia coli (UPEC) is a major bacterial pathogen that causes urinary tract infections (UTIs). The mouse is an available UTI model for studying the pathogenicity; however, Caenorhabditis elegans represents as an alternative surrogate host with the capacity for high-throughput analysis. Then, we established a simple assay for a UPEC infection model with C. elegans for large-scale screening. A total of 133 clinically isolated E. coli strains, which included UTI-associated and fecal isolates, were applied to demonstrate the simple pathogenicity assay. From the screening, several virulence factors (VFs) involved with iron acquisition (chuA, fyuA, and irp2) were significantly associated with high pathogenicity. We then evaluated whether the VFs in UPEC were involved in the pathogenicity. Mutants of E. coli UTI89 with defective iron acquisition systems were applied to a solid killing assay with C. elegans. As a result, the survival rate of C. elegans fed with the mutants significantly increased compared to when fed with the parent strain. The results demonstrated, the simple assay with C. elegans was useful as a UPEC infectious model. To our knowledge, this is the first report of the involvement of iron acquisition in the pathogenicity of UPEC in a C. elegans model.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1348
Author(s):  
Lívia Slobodníková ◽  
Barbora Markusková ◽  
Michal Kajsík ◽  
Michal Andrezál ◽  
Marek Straka ◽  
...  

Urinary tract infections (UTIs) are among the events that most frequently need medical intervention. Uropathogenic Escherichia coli are frequently their causative agents and the infections are sometimes complicated by the presence of polyresistant nosocomial strains. Phage therapy is a tool that has good prospects for the treatment of these infections. In the present study, we isolated and characterized two bacteriophages with broad host specificity against a panel of local uropathogenic E. coli strains and combined them into a phage cocktail. According to genome sequencing, these phages were closely related and belonged to the Tequatrovirus genus. The newly isolated phages showed very good activity on a panel of local clinical E. coli strains from urinary tract infections. In the form of a two-phage cocktail, they were active on E. coli strains belonging to phylogroups B2 and D, with relatively lower activity in B1 and no response in phylogroup A. Our study is a preliminary step toward the establishment of a national phage bank containing local, well-characterized phages with therapeutic potential for patients in Slovakia.


2010 ◽  
Vol 5 (6) ◽  
pp. 827-830
Author(s):  
Georgi Slavchev ◽  
Nadya Markova

AbstractUropathogenic strains of E. coli isolated from urine of patients with urinary tract infections were tested for antibiotic sensitivity using bio-Merieux kits and ATB-UR 5 expression system. The virulence of strains was evaluated by serum bactericidal assay, macrophage “killing” and bacterial adhesive tests. Survival capability of strains was assessed under starvation in saline. The results showed that quinolone-resistant uropathogenic strains of E. coli exhibit significantly reduced adhesive potential but relatively high resistance to serum and macrophage bactericidity. In contrast to laboratory strains, the quinolone-resistant uropathogenic clinical isolate demonstrated increased viability during starvation in saline. Our study suggests that quinolone-resistant uropathogenic strains are highly adaptable clones of E. coli, which can exhibit compensatory viability potential under unfavorable conditions. The clinical occurrence of such phenotypes is likely to contribute to the survival, persistence and spread strategy of resistant bacteria.


mBio ◽  
2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Dana Willner ◽  
Serene Low ◽  
Jason A. Steen ◽  
Narelle George ◽  
Graeme R. Nimmo ◽  
...  

ABSTRACTUrinary tract infections (UTIs) are one of the most commonly acquired bacterial infections in humans, and uropathogenicEscherichia colistrains are responsible for over 80% of all cases. The standard method for identification of uropathogens in clinical laboratories is cultivation, primarily using solid growth media under aerobic conditions, coupled with morphological and biochemical tests of typically a single isolate colony. However, these methods detect only culturable microorganisms, and characterization is phenotypic in nature. Here, we explored the genotypic identity of communities in acute uncomplicated UTIs from 50 individuals by using culture-independent amplicon pyrosequencing and whole-genome and metagenomic shotgun sequencing. Genus-level characterization of the UTI communities was achieved using the 16S rRNA gene (V8 region). Overall UTI community richness was very low in comparison to other human microbiomes. We strain-typedEscherichia-dominated UTIs using amplicon pyrosequencing of the fimbrial adhesin gene,fimH. There were nine highly abundantfimHtypes, and each UTI sample was dominated by a single type. Molecular analysis of the corresponding clinical isolates revealed that in the majority of cases the isolate was representative of the dominant taxon in the community at both the genus and the strain level. Shotgun sequencing was performed on a subset of eightE. coliurine UTI and isolate pairs. The majority of UTI microbial metagenomic sequences mapped to isolate genomes, confirming the results obtained using phylogenetic markers. We conclude that for the majority of acute uncomplicatedE. coli-mediated UTIs, single cultured isolates are diagnostic of the infection.IMPORTANCEIn clinical practice, the diagnosis and treatment of acute uncomplicated urinary tract infection (UTI) are based on analysis of a single bacterial isolate cultured from urine, and it is assumed that this isolate represents the dominant UTI pathogen. However, these methods detect only culturable bacteria, and the existence of multiple pathogens as well as strain diversity within a single infection is not examined. Here, we explored bacteria present in acute uncomplicated UTIs using culture-independent sequence-based methods.Escherichia coliwas the most common organism identified, and analysis ofE. colidominant UTI samples and their paired clinical isolates revealed that in the majority of infections the cultured isolate was representative of the dominant taxon at both the genus and the strain level. Our data demonstrate that in most cases single cultured isolates are diagnostic of UTI and are consistent with the notion of bottlenecks that limit strain diversity during UTI pathogenesis.


2003 ◽  
Vol 71 (6) ◽  
pp. 3088-3096 ◽  
Author(s):  
Peter Redford ◽  
Paula L. Roesch ◽  
Rodney A. Welch

ABSTRACT Extraintestinal Escherichia coli strains cause meningitis, sepsis, urinary tract infection, and other infections outside the bowel. We examined here extraintestinal E. coli strain CFT073 by differential fluorescence induction. Pools of CFT073 clones carrying a CFT073 genomic fragment library in a promoterless gfp vector were inoculated intraperitoneally into mice; bacteria were recovered by lavage 6 h later and then subjected to fluorescence-activated cell sorting. Eleven promoters were found to be active in the mouse but not in Luria-Bertani (LB) broth culture. Three are linked to genes for enterobactin, aerobactin, and yersiniabactin. Three others are linked to the metabolic genes metA, gltB, and sucA, and another was linked to iha, a possible adhesin. Three lie before open reading frames of unknown function. One promoter is associated with degS, an inner membrane protease. Mutants of the in vivo-induced loci were tested in competition with the wild type in mouse peritonitis. Of the mutants tested, only CFT073 degS was found to be attenuated in peritoneal and in urinary tract infection, with virulence restored by complementation. CFT073 degS shows growth similar to that of the wild type at 37°C but is impaired at 43°C or in 3% ethanol LB broth at 37°C. Compared to the wild type, the mutant shows similar serum survival, motility, hemolysis, erythrocyte agglutination, and tolerance to oxidative stress. It also has the same lipopolysaccharide appearance on a silver-stained gel. The basis for the virulence attenuation is unclear, but because DegS is needed for σE activity, our findings implicate σE and its regulon in E. coli extraintestinal pathogenesis.


2017 ◽  
Vol 18 (0) ◽  
Author(s):  
Camila Sampaio Cutrim ◽  
Raphael Ferreira de Barros ◽  
Robson Maia Franco ◽  
Marco Antonio Sloboda Cortez

Abstract The purpose of this study was to evaluate the behavior of E. coli O157:H7 during lactose hydrolysis and fermentation of traditional and low lactose yogurt. It also aimed to verify E. coli O157:H7 survival after 12 h of storage at 4 ºC ±1 ºC. Two different types of yogurts were prepared, two with whole milk and two with pre-hydrolyzed whole milk; in both groups one yogurt was inoculated with E. coli O157:H7 and the other one was not inoculated. The survival of E. coli and pH of yogurt were determined during fermentation and after 12-h refrigeration. The results showed that E. coli O157:H7 was able to grow during the fermentation period (from 4.34 log CFU.mL-1 to 6.13 log CFU.mL-1 in traditional yogurt and 4.34 log CFU.mL-1 to 6.16 log CFU.mL-1 in low lactose yogurt). The samples with E. coli O157:H7 showed gas formation and syneresis. Thus, E. coli O157:H7 was able to survive and grow during fermentation of traditional and low lactose yogurts affecting the manufacture technology. Moreover, milk contamination by E. coli before LAB addition reduces the growth of L. bulgaricus and S. thermophilus especially when associated with reduction of lactose content.


2005 ◽  
Vol 49 (6) ◽  
pp. 2343-2351 ◽  
Author(s):  
Patricia Komp Lindgren ◽  
Linda L. Marcusson ◽  
Dorthe Sandvang ◽  
Niels Frimodt-Møller ◽  
Diarmaid Hughes

ABSTRACT Resistance to fluoroquinolones in urinary tract infection (UTIs) caused by Escherichia coli is associated with multiple mutations, typically those that alter DNA gyrase and DNA topoisomerase IV and those that regulate AcrAB-TolC-mediated efflux. We asked whether a fitness cost is associated with the accumulation of these multiple mutations. Mutants of the susceptible E. coli UTI isolate Nu14 were selected through three to five successive steps with norfloxacin. Each selection was performed with the MIC of the selected strain. After each selection the MIC was measured; and the regions of gyrA, gyrB, parC, and parE, previously associated with resistance mutations, and all of marOR and acrR were sequenced. The first selection step yielded mutations in gyrA, gyrB, and marOR. Subsequent selection steps yielded mutations in gyrA, parE, and marOR but not in gyrB, parC, or acrR. Resistance-associated mutations were identified in almost all isolates after selection steps 1 and 2 but in less than 50% of isolates after subsequent selection steps. Selected strains were competed in vitro, in urine, and in a mouse UTI infection model against the starting strain, Nu14. First-step mutations were not associated with significant fitness costs. However, the accumulation of three or more resistance-associated mutations was usually associated with a large reduction in biological fitness, both in vitro and in vivo. Interestingly, in some lineages a partial restoration of fitness was associated with the accumulation of additional mutations in late selection steps. We suggest that the relative biological costs of multiple mutations may influence the evolution of E. coli strains that develop resistance to fluoroquinolones.


Sign in / Sign up

Export Citation Format

Share Document