scholarly journals Genomic diversity of Escherichia coli isolates from non-human primates in the Gambia

2020 ◽  
Vol 6 (9) ◽  
Author(s):  
Ebenezer Foster-Nyarko ◽  
Nabil-Fareed Alikhan ◽  
Anuradha Ravi ◽  
Gaëtan Thilliez ◽  
Nicholas M. Thomson ◽  
...  

Increasing contact between humans and non-human primates provides an opportunity for the transfer of potential pathogens or antimicrobial resistance between host species. We have investigated genomic diversity and antimicrobial resistance in Escherichia coli isolates from four species of non-human primates in the Gambia: Papio papio (n=22), Chlorocebus sabaeus (n=14), Piliocolobus badius (n=6) and Erythrocebus patas (n=1). We performed Illumina whole-genome sequencing on 101 isolates from 43 stools, followed by nanopore long-read sequencing on 11 isolates. We identified 43 sequence types (STs) by the Achtman scheme (ten of which are novel), spanning five of the eight known phylogroups of E. coli . The majority of simian isolates belong to phylogroup B2 – characterized by strains that cause human extraintestinal infections – and encode factors associated with extraintestinal disease. A subset of the B2 strains (ST73, ST681 and ST127) carry the pks genomic island, which encodes colibactin, a genotoxin associated with colorectal cancer. We found little antimicrobial resistance and only one example of multi-drug resistance among the simian isolates. Hierarchical clustering showed that simian isolates from ST442 and ST349 are closely related to isolates recovered from human clinical cases (differences in 50 and 7 alleles, respectively), suggesting recent exchange between the two host species. Conversely, simian isolates from ST73, ST681 and ST127 were distinct from human isolates, while five simian isolates belong to unique core-genome ST complexes – indicating novel diversity specific to the primate niche. Our results are of planetary health importance, considering the increasing contact between humans and wild non-human primates.

2020 ◽  
Vol 6 (7) ◽  
Author(s):  
Bede Constantinides ◽  
Kevin K. Chau ◽  
T. Phuong Quan ◽  
Gillian Rodger ◽  
Monique I. Andersson ◽  
...  

Escherichia coli and Klebsiella spp. are important human pathogens that cause a wide spectrum of clinical disease. In healthcare settings, sinks and other wastewater sites have been shown to be reservoirs of antimicrobial-resistant E. coli and Klebsiella spp., particularly in the context of outbreaks of resistant strains amongst patients. Without focusing exclusively on resistance markers or a clinical outbreak, we demonstrate that many hospital sink drains are abundantly and persistently colonized with diverse populations of E. coli , Klebsiella pneumoniae and Klebsiella oxytoca , including both antimicrobial-resistant and susceptible strains. Using whole-genome sequencing of 439 isolates, we show that environmental bacterial populations are largely structured by ward and sink, with only a handful of lineages, such as E. coli ST635, being widely distributed, suggesting different prevailing ecologies, which may vary as a result of different inputs and selection pressures. Whole-genome sequencing of 46 contemporaneous patient isolates identified one (2 %; 95 % CI 0.05–11 %) E. coli urine infection-associated isolate with high similarity to a prior sink isolate, suggesting that sinks may contribute to up to 10 % of infections caused by these organisms in patients on the ward over the same timeframe. Using metagenomics from 20 sink-timepoints, we show that sinks also harbour many clinically relevant antimicrobial resistance genes including bla CTX-M, bla SHV and mcr, and may act as niches for the exchange and amplification of these genes. Our study reinforces the potential role of sinks in contributing to Enterobacterales infection and antimicrobial resistance in hospital patients, something that could be amenable to intervention. This article contains data hosted by Microreact.


Author(s):  
Aleksandra Trościańczyk ◽  
Aneta Nowakiewicz ◽  
Sebastian Gnat ◽  
Dominik Łagowski ◽  
Marcelina Osińska ◽  
...  

Introduction. The possible transfer of antimicrobial resistance genes between Enterococcus faecium isolates from humans and different animal species, including those not covered by monitoring programs (e.g. pet and wildlife), poses a serious threat to public health. Hypothesis/Gap Statement. Little is known about occurrence and mechanisms of phenomenon of multidrug resistance of E. faecium isolated from various host species in Poland. Aim. The aim of the study was to characterize multidrug-resistant E. faecium isolated from humans and animals (livestock, pets and wildlife) in terms of the occurrence of genetic markers determining resistance. Methodology. Bacterial isolates were tested for phenotypic resistance and the presence of genes encoding resistance to macrolides, tetracycline, aminoglycosides, aminocyclitols and phenicols as well as efflux pump (emeA), resolvase (tndX) and integrase (Int-Tn) genes. The quinolone resistance-determining regions of gyrA and parC were sequenced. Results. Human isolates of E. faecium were characterized by high-level resistance to: ciprofloxacin, enrofloxacin, erythromycin (100 %), as well, as aminoglycosides resistance (kanamycin – 100%, streptomycin – 78 %, gentamicin – 78%). Regardless of the animal species, high level of resistance of E. faecium to tetracycline (from 88–100 %), erythromycin (from 82–94 %) and kanamycin (from 36–100 %) was observed. All E. faecium isolates from wildlife were resistant to fluoroquinolones. However, full susceptibility to vancomycin was observed in all isolates tested. Phenotypic antimicrobial resistance of E. faecium was identified in the presence of the following resistance genes: erm(B) (70%), msr(A) (50 %), tet(L) (35 %), tet(K) (34 %), tet(M) (76 %), aac(6’)-Ie-aph(2″)-Ia (25%), ant(6)-Ia (31%), aph(3)-IIIa (68 %), (tndX) (23 %), and integrase gene (Int-Tn) (34 %). A correlation between an amino acid substitution at positions 83 and 87 of gyrA and position 80 of parC and the high-level fluoroquinolone resistance in E. faecium has been observed as well. Conclusion. The level and range of antimicrobial resistance and the panel of resistance determinants is comparable between E. faecium isolates, despite host species.


2020 ◽  
Vol 69 (4) ◽  
pp. 537-547 ◽  
Author(s):  
Daniela Ceccarelli ◽  
Ayla Hesp ◽  
Jeanet van der Goot ◽  
Philip Joosten ◽  
Steven Sarrazin ◽  
...  

The aim of this article is to report on antimicrobial resistance (AMR) in commensal Escherichia coli from livestock from several European countries. The relationships with antimicrobial usage (AMU) at country level and harmonized indicators to cover the most relevant AMR aspects for human health in animal production were also investigated. E. coli were isolated in faeces from broilers and fattening pigs (from nine countries), and fattening turkeys and veal calves (from three countries) and screened against a fixed antimicrobial panel. AMU data were collected at farm and average treatment incidences stratified by antimicrobial class, country and livestock species were calculated. Associations between AMR and AMU at country level were analysed. Independent of animal species, the highest resistance was observed for ampicillin, sulphamethoxazole, tetracycline and trimethoprim. E. coli from broilers showed the highest resistance level for (fluoro)quinolones, and multidrug resistance peaked in broilers and fattening turkeys. Colistin resistance was observed at very low levels with the exception of fattening turkeys. High resistance to third- and fourth-generation cephalosporins was detected in broilers and fattening turkeys. The lowest levels of resistance were for meropenem, azithromycin and tigecycline (<1 %). Significant correlations between resistance and usage at country level were detected in broilers for polymyxins and aminoglycosides, and in fattening pigs for cephalosporins, amphenicols, fluoroquinolones and polymyxins. None of the correlations observed between AMR and AMU were statistically significant for fattening turkey and veal calves. The strength of the analysis performed here is the correlation of aggregated data from the same farms at country level for both AMU and AMR within antimicrobial classes.


2020 ◽  
Author(s):  
Gerald Tegha ◽  
Emily J. Ciccone ◽  
Robert Krysiak ◽  
James Kaphatika ◽  
Tarsizio Chikaonda ◽  
...  

Antimicrobial resistance (AMR) is a global threat, including in sub-Saharan Africa. However, little is known about the genetics of resistant bacteria in the region. In Malawi, there is growing concern about increasing rates of antimicrobial resistance to most empirically used antimicrobials. The highly drug resistant Escherichia coli sequence type (ST) 131, which is associated with the extended spectrum β-lactamase blaCTX-M-15 , has been increasing in prevalence globally. Previous data from isolates collected between 2006 and 2013 in southern Malawi have revealed the presence of ST131 and the blaCTX-M-15 gene in the country. We performed whole genome sequencing (WGS) of 58 clinical E. coli isolates at Kamuzu Central Hospital, a tertiary care centre in central Malawi, collected from 2012 to 2018. We used Oxford Nanopore Technologies (ONT) sequencing, which was performed in Malawi. We show that ST131 is observed more often (14.9% increasing to 32.8%) and that the blaCTX-M-15 gene is occurring at a higher frequency (21.3% increasing to 44.8%). Phylogenetics indicates that isolates are highly related between the central and southern geographic regions and confirms that ST131 isolates are contained in a single group. All AMR genes, including blaCTX-M-15 , were widely distributed across sequence types. We also identified an increased number of ST410 isolates, which in this study tend to carry a plasmid-located copy of blaCTX-M-15 gene at a higher frequency than blaCTX-M-15 occurs in ST131. This study confirms the expanding nature of ST131 and the wide distribution of the blaCTX-M-15 gene in Malawi. We also highlight the feasibility of conducting longitudinal genomic epidemiology studies of important bacteria with the sequencing done on site using a nanopore platform that requires minimal infrastructure.


2019 ◽  
Vol 68 (9) ◽  
pp. 1330-1340 ◽  
Author(s):  
Regiane C. B. Dias ◽  
Melissa A. Vieira ◽  
Ana C. Moro ◽  
Danilo F. M. Ribolli ◽  
Aydir C. M. Monteiro ◽  
...  

Purpose. This study aimed to characterize 27 Escherichia coli isolates obtained from peritoneal dialysis (PD)-related peritonitis that occurred at the University Hospital of Botucatu Medical School, Brazil, between 1997 and 2015. Methodology. These isolates were characterized regarding the occurrence of 22 virulence factor-encoding genes, antimicrobial resistance and biofilm production. We then evaluated whether these factors influenced the clinical outcome. Results. Over an 18-year period, 726 episodes of PD-related peritonitis were diagnosed, with 27 of them (3.7 %) being due to E. coli . The majority of the isolates were classified in phylogroups B1 (33.3 %), B2 (30.0 %) or F (18.0 %). fimH (100.0 %), ompT (66.7 %) and irp2 (51.9 %) were the most prevalent genes, while papA, papC, iha, sat, irp2, iucD, ireA, ibe10, ompT and kpsMTII were significantly more prevalent among isolates belonging to phylogroups B2 and F (P<0.05). Non-susceptibility to quinolones was detected in six isolates, which harboured chromosomal and/or plasmid-mediated quinolone resistance determinants, while two CTX-M extended-spectrum β-lactamase-producing E. coli were identified. Virulence factor-encoding genes (alone or in combination) and antimicrobial resistance were not associated with non-resolution outcomes. However, there was a trend for the ability to produce biofilm to be associated with treatment failure, although this association was not statistically significant. Conclusion. The E. coli isolates were heterogeneous in terms of the features investigated, and were susceptible to most of the antimicrobial drugs tested, despite the unsuccessful treatment observed in more than 50.0 % of the patients. Studies including more cases could help to clarify if biofilm production can influence the outcome in patients with PD-related peritonitis.


2020 ◽  
Vol 69 (3) ◽  
pp. 379-386 ◽  
Author(s):  
Amy Gentle ◽  
Martin R. Day ◽  
Katie L. Hopkins ◽  
Gauri Godbole ◽  
Claire Jenkins

Introduction. Despite many ongoing surveillance projects and the recent focus on the veterinary and clinical ‘One Health’ aspects of antimicrobial resistance (AMR), evidence of the extent of any public health risk posed by animal reservoirs with respect to the transmission of resistant strains of Escherichia coli to humans remains varied and contentious. In the UK, the main zoonotic reservoir for the foodborne pathogen Shiga toxin-producing E. coli (STEC) is cattle and sheep. In this study, we adopt an alternative approach to the risk assessment of transmission of AMR E. coli from animals to humans, involving monitoring AMR in isolates of STEC, an established zoonotic, foodborne pathogen, from human cases of gastrointestinal disease. Aim. The aim of this study was to determine the genome-derived AMR profiles for STEC from human cases to assess the risk of transmission of multidrug-resistant STEC from ruminants to humans. Methodology. STEC belonging to 10 different clonal complexes (CCs) (n=457) isolated from human faecal specimens were sequenced and genome-derived AMR profiles were determined. Phenotypic susceptibility testing was undertaken on all isolates (n=100) predicted to be resistant to at least one class of antimicrobial. Results. Of the 457 isolates, 332 (72.7 %) lacked identifiable resistance genes and were predicted to be fully susceptible to 11 classes of antimicrobials; 125/332 (27.3 %) carried 1 or more resistance genes, of which 83/125 (66.4 %) were resistant to 3 or more classes of antibiotic. The percentage of isolates harbouring AMR determinants varied between CCs, from 4% in CC25 to 100% in CC504. Forty-six different AMR genes were detected, which conferred resistance to eight different antibiotic classes. Resistance to ampicillin, streptomycin, tetracyclines and sulphonamides was most commonly detected. Four isolates were identified as extended-spectrum β-lactamase producers. An overall concordance of 97.7 % (n=1075/1100) was demonstrated between the phenotypic and genotypic methods. Conclusion. This analysis provided an indirect assessment of the risk of transmission of AMR gastrointestinal pathogens from animals to humans, and revealed a subset of human isolates of the zoonotic pathogen STEC were resistant to the antimicrobials used in animal husbandry. However, this proportion has not increased over the last three decades, and thismay provide evidence that guidancepromoting responsible practice has been effective.


2020 ◽  
Author(s):  
Ebenezer Foster-Nyarko ◽  
Nabil-Fareed Alikhan ◽  
Anuradha Ravi ◽  
Nicholas M. Thomson ◽  
Sheikh Jarju ◽  
...  

Chickens and guinea fowl are commonly reared in Gambian homes as affordable sources of protein. Using standard microbiological techniques, we obtained 68 caecal isolates of Escherichia coli from 10 chickens and 9 guinea fowl in rural Gambia. After Illumina whole-genome sequencing, 28 sequence types were detected in the isolates (4 of them novel), of which ST155 was the most common (22/68, 32 %). These strains span four of the eight main phylogroups of E. coli, with phylogroups B1 and A being most prevalent. Nearly a third of the isolates harboured at least one antimicrobial resistance gene, while most of the ST155 isolates (14/22, 64 %) encoded resistance to ≥3 classes of clinically relevant antibiotics, as well as putative virulence factors, suggesting pathogenic potential in humans. Furthermore, hierarchical clustering revealed that several Gambian poultry strains were closely related to isolates from humans. Although the ST155 lineage is common in poultry from Africa and South America, the Gambian ST155 isolates belong to a unique cgMLST cluster comprising closely related (38–39 alleles differences) isolates from poultry and livestock from sub-Saharan Africa – suggesting that strains can be exchanged between poultry and livestock in this setting. Continued surveillance of E. coli and other potential pathogens in rural backyard poultry from sub-Saharan Africa is warranted.


2021 ◽  
Vol 7 (10) ◽  
Author(s):  
Manal AbuOun ◽  
Hannah Jones ◽  
Emma Stubberfield ◽  
Daniel Gilson ◽  
Liam P. Shaw ◽  
...  

Enterobacterales from livestock are potentially important reservoirs for antimicrobial resistance (AMR) to pass through the food chain to humans, thereby increasing the AMR burden and affecting our ability to tackle infections. In this study 168 isolates from four genera of the order Enterobacterales , primarily Escherichia coli , were purified from livestock (cattle, pigs and sheep) faeces from 14 farms in the United Kingdom. Their genomes were resolved using long- and short-read sequencing to analyse AMR genes and their genetic context, as well as to explore the relationship between AMR burden and on-farm antimicrobial usage (AMU), in the three months prior to sampling. Although E. coli isolates were genomically diverse, phylogenetic analysis using a core-genome SNP tree indicated pig isolates to generally be distinct from sheep isolates, with cattle isolates being intermediates. Approximately 28 % of isolates harboured AMR genes, with the greatest proportion detected in pigs, followed by cattle then sheep; pig isolates also harboured the highest number of AMR genes per isolate. Although 90 % of sequenced isolates harboured diverse plasmids, only 11 % of plasmids (n=58 out of 522) identified contained AMR genes, with 91 % of AMR plasmids being from pig, 9 % from cattle and none from sheep isolates; these results indicated that pigs were a principle reservoir of AMR genes harboured by plasmids and likely to be involved in their horizontal transfer. Significant associations were observed between AMU (mg kg−1) and AMR. As both the total and the numbers of different antimicrobial classes used on-farm increased, the risk of multi-drug resistance (MDR) in isolates rose. However, even when AMU on pig farms was comparatively low, pig isolates had increased likelihood of being MDR; harbouring relatively more resistances than those from other livestock species. Therefore, our results indicate that AMR prevalence in livestock is not only influenced by recent AMU on-farm but also livestock-related factors, which can influence the AMR burden in these reservoirs and its plasmid mediated transmission.


2020 ◽  
Vol 69 (7) ◽  
pp. 932-943
Author(s):  
Megan D. Boxall ◽  
Martin R. Day ◽  
David R. Greig ◽  
Claire Jenkins

Introduction. Diarrhoeagenic Escherichia coli (DEC) are difficult to distinguish from non-pathogenic commensal E. coli using traditional culture methods. The implementation of PCR targeting specific virulence genes characteristic of the five DEC pathotypes, has improved the detection of DEC in faecal specimens from patients with symptoms of gastrointestinal disease. Aim. Antimicrobial resistance (AMR) profiles of 660 strains of DEC isolated between 2015 and 2017 from UK travellers reporting symptoms of gastrointestinal disease were reviewed to look for evidence of emerging AMR associated with travellers’ diarrhoea. Methodology. All isolates of DEC were sequenced, and sequence type, serotype, pathotype markers and AMR profiles were derived from the genome data. Results. A travel history was provided for 54.1 % (357/660) of cases, of which 77.0 % (275/357) reported travel outside the UK within 7 days of onset of symptoms, and 23.0 % (82/357) reported no travel in that time frame. Of the 660 strains of DEC in this study, 265 (40.2 %) samples were identified as EAEC, 48 (7.3 %) as EIEC, 61 (9.2 %) were ETEC and 286 (43.3 %) were EPEC. EPEC caused the highest percentage of infections in children (40.6 %) whilst the highest proportion of cases reporting recent travel were infected with ETEC (86.1 %). There were 390/660 (59.0 %) isolates resistant to at least one antimicrobial on the panel tested (EIEC, 81.3 %; ETEC, n=65.6 %; EAEC, n=73.2 %; EPEC, 40.9 %) and 265/660 (40.2 %) were multidrug-resistant (EIEC, 33.3 %; ETEC, 32.8 %; EAEC, 56.2 %; EPEC, 28.0 %). Genes conferring resistance to the beta-lactams and fluroquinolones were highest in the EAEC pathotype, 56.6 and 60.7%, respectively. Conclusions. Increasing MDR, along with resistance to the fluroquinolones and the third-generation cephalosporins, in DEC causing travellers’ diarrhoea provides further evidence for the need to restrict the use of antimicrobial agents and continuous monitoring.


Author(s):  
Ebenezer Foster-Nyarko ◽  
Nabil-Fareed Alikhan ◽  
Anuradha Ravi ◽  
Gaëtan Thilliez ◽  
Nicholas Thomson ◽  
...  

AbstractIncreasing contact between humans and non-human primates provides an opportunity for the transfer of potential pathogens or antimicrobial resistance between host species. We have investigated genomic diversity, and antimicrobial resistance in Escherichia coli isolates from four species of non-human primate in the Gambia: Papio papio (n=22), Chlorocebus sabaeus (n=14), Piliocolobus badius (n=6) and Erythrocebus patas (n=1). We performed Illumina whole-genome sequencing on 101 isolates from 43 stools, followed by nanopore long-read sequencing on eleven isolates. We identified 43 sequence types (STs) by the Achtman scheme (ten of which are novel), spanning five of the eight known phylogroups of E. coli. The majority of simian isolates belong to phylogroup B2—characterised by strains that cause human extraintestinal infections—and encode factors associated with extraintestinal disease. A subset of the B2 strains (ST73, ST681 and ST127) carry the pks genomic island, which encodes colibactin, a genotoxin associated with colorectal cancer. We found little antimicrobial resistance and only one example of multi-drug resistance among the simian isolates. Hierarchical clustering showed that simian isolates from ST442 and ST349 are closely related to isolates recovered from human clinical cases (differences in 50 and seven alleles respectively), suggesting recent exchange between the two host species. Conversely, simian isolates from ST73, ST681 and ST127 were distinct from human isolates, while five simian isolates belong to unique core-genome ST complexes—indicating novel diversity specific to the primate niche. Our results are of public health importance, considering the increasing contact between humans and wild non-human primates.Impact statementLittle is known about the population structure, virulence potential and the burden of antimicrobial resistance among Escherichia coli from wild non-human primates, despite increased exposure to humans through the fragmentation of natural habitats. Previous studies, primarily involving captive animals, have highlighted the potential for bacterial exchange between non-human primates and humans living nearby, including strains associated with intestinal pathology. Using multiple-colony sampling and whole-genome sequencing, we investigated the strain distribution and population structure of E. coli from wild non-human primates from the Gambia. Our results indicate that these monkeys harbour strains that can cause extraintestinal infections in humans. We document the transmission of virulent E. coli strains between monkeys of the same species sharing a common habitat and evidence of recent interaction between strains from humans and wild non-human primates. Also, we present complete genome assemblies for five novel sequence types of E. coli.Author notesAll supporting data, code and protocols have been provided within the article or through supplementary data files. Nine supplementary figures and six supplementary files are available with the online version of this article.AbbreviationsExPEC, Extraintestinal pathogenic Escherichia coli; ST, Sequence type; AMR, Antimicrobial resistance; MLST, Multi-locus sequence typing; VFDB, Virulence factors database; SNP, single nucleotide polymorphism; SPRI, Solid phase reversible immobilisation.Data summaryThe raw sequences and polished assemblies from this study are available in the National Center for Biotechnology Information (NCBI) Short Read Archive, under the BioProject accession number PRJNA604701. The full list and characteristics of these strains and other reference strains used in the analyses are presented in Table 1 and Supplementary Files 1-4 (available with the online version of this article).


Sign in / Sign up

Export Citation Format

Share Document